Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 4262, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253738

ABSTRACT

The epithelial-mesenchymal transition (EMT) has been implicated in conferring stem cell properties and therapeutic resistance to cancer cells. Therefore, identification of drugs that can reprogram EMT may provide new therapeutic strategies. Here, we report that cells derived from claudin-low mammary tumors, a mesenchymal subtype of triple-negative breast cancer, exhibit a distinctive organoid structure with extended "spikes" in 3D matrices. Upon a miR-200 induced mesenchymal-epithelial transition (MET), the organoids switch to a smoother round morphology. Based on these observations, we developed a morphological screening method with accompanying analytical pipelines that leverage deep neural networks and nearest neighborhood classification to screen for EMT-reversing drugs. Through screening of a targeted epigenetic drug library, we identified multiple class I HDAC inhibitors and Bromodomain inhibitors that reverse EMT. These data support the use of morphological screening of mesenchymal mammary tumor organoids as a platform to identify drugs that reverse EMT.


Subject(s)
Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Mammary Neoplasms, Animal/pathology , Mesoderm/pathology , Organoids/pathology , Animals , Azacitidine/pharmacology , Benzamides/pharmacology , Drug Screening Assays, Antitumor , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Image Processing, Computer-Assisted , Mammary Neoplasms, Animal/genetics , Mice, Inbred BALB C , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , Organoids/drug effects , Pyrimidines/pharmacology , Reproducibility of Results , Small Molecule Libraries/pharmacology
2.
Cancer Res ; 78(15): 4229-4240, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29844125

ABSTRACT

Cooperativity between WNT and FGF signaling is well documented in embryonic development and cancer progression, but the molecular mechanisms underlying this cross-talk remain elusive. In this study, we interrogated the dynamics of RNA levels, ribosome occupancy, and protein expression as a function of inducible FGF signaling in mouse mammary glands with constitutive WNT hyperactivation. Multiomics correlation analysis revealed a substantial discrepancy between RNA and ribosome occupancy levels versus protein levels. However, this discrepancy decreased as cells became premalignant and dynamically responded to FGF signaling, implicating the importance of stringent gene regulation in nontransformed cells. Analysis of individual genes demonstrated that acute FGF hyperactivation increased translation of many stem cell self-renewal regulators, including WNT signaling components, and decreased translation of genes regulating cellular senescence. WNT pathway components translationally upregulated by FGF signaling had long and structured 5' UTRs with a high frequency of polypurine sequences, several of which harbored (CGG)4 motifs that can fold into either stable G-quadruplexes or other stable secondary structures. The FGF-mediated increase in translation of WNT pathway components was compromised by silvestrol, an inhibitor of EIF4A that clamps EIF4A to polypurine sequences to block 43S scanning and inhibits its RNA-unwinding activity important for translation initiation. Moreover, silvestrol treatment significantly delayed FGF-WNT-driven tumorigenesis. Taken together, these results suggest that FGF signaling selectively enhances translation of structured mRNAs, particularly WNT signaling components, and highlight their vulnerability to inhibitors that target the RNA helicase EIF4A.Significance: The RNA helicase EIF4A may serve as a therapeutic target for breast cancers that require FGF and WNT signaling. Cancer Res; 78(15); 4229-40. ©2018 AACR.


Subject(s)
5' Untranslated Regions/genetics , Eukaryotic Initiation Factor-4A/genetics , Protein Biosynthesis/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Wnt Signaling Pathway/genetics , 5' Untranslated Regions/drug effects , Animals , Mice , Protein Biosynthesis/drug effects , RNA Helicases/genetics , RNA, Messenger/genetics , Ribosomes/drug effects , Ribosomes/genetics , Triterpenes/pharmacology , Wnt Signaling Pathway/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...