Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4831, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844486

ABSTRACT

Arrays of Josephson junctions are at the forefront of research on quantum circuitry for quantum computing, simulation, and metrology. They provide a testing bed for exploring a variety of fundamental physical effects where macroscopic phase coherence, nonlinearities, and dissipative mechanisms compete. Here we realize finite-circulation states in an atomtronic Josephson junction necklace, consisting of a tunable array of tunneling links in a ring-shaped superfluid. We study the stability diagram of the atomic flow by tuning both the circulation and the number of junctions. We predict theoretically and demonstrate experimentally that the atomic circuit withstands higher circulations (corresponding to higher critical currents) by increasing the number of Josephson links. The increased stability contrasts with the trend of the superfluid fraction - quantified by Leggett's criterion - which instead decreases with the number of junctions and the corresponding density depletion. Our results demonstrate atomic superfluids in mesoscopic structured ring potentials as excellent candidates for atomtronics applications, with prospects towards the observation of non-trivial macroscopic superpositions of current states.

2.
Sci Rep ; 8(1): 1301, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358635

ABSTRACT

Laser cooling based on dark states, i.e. states decoupled from light, has proven to be effective to increase the phase-space density of cold trapped atoms. Dark-states cooling requires open atomic transitions, in contrast to the ordinary laser cooling used for example in magneto-optical traps (MOTs), which operate on closed atomic transitions. For alkali atoms, dark-states cooling is therefore commonly operated on the D1 transition nS1/2 → nP1/2. We show that, for 87Rb, thanks to the large hyperfine structure separations the use of this transition is not strictly necessary and that "quasi-dark state" cooling is efficient also on the D2 line, 5S1/2 → 5P3/2. We report temperatures as low as (4.0 ± 0.3) µK and an increase of almost an order of magnitude in the phase space density with respect to ordinary laser sub-Doppler cooling.

3.
Science ; 350(6267): 1505-8, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26680193

ABSTRACT

The Josephson effect is a macroscopic quantum phenomenon that reveals the broken symmetry associated with any superfluid state. Here we report on the observation of the Josephson effect between two fermionic superfluids coupled through a thin tunneling barrier. We show that the relative population and phase are canonically conjugate dynamical variables throughout the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regime. For larger initial excitations from equilibrium, the dynamics of the superfluids become dissipative, which we ascribe to the propagation of vortices through the superfluid bulk. Our results highlight the robust nature of resonant superfluids.

4.
Nature ; 472(7342): 201-4, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21490670

ABSTRACT

Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information. Neutrino transport energizes supernova explosions following the collapse of a dying star, and hydrodynamic transport of the quark-gluon plasma governed the expansion of the early Universe. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance. In this hydrodynamic regime, collective density excitations are weakly damped. Here we experimentally investigate spin excitations in a Fermi gas of (6)Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by [planck]/m, the quantum limit of diffusion, where [planck]/m is Planck's constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state.

5.
Nature ; 453(7197): 895-8, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18548066

ABSTRACT

Anderson localization of waves in disordered media was originally predicted fifty years ago, in the context of transport of electrons in crystals. The phenomenon is much more general and has been observed in a variety of systems, including light waves. However, Anderson localization has not been observed directly for matter waves. Owing to the high degree of control over most of the system parameters (in particular the interaction strength), ultracold atoms offer opportunities for the study of disorder-induced localization. Here we use a non-interacting Bose-Einstein condensate to study Anderson localization. The experiment is performed with a one-dimensional quasi-periodic lattice-a system that features a crossover between extended and exponentially localized states, as in the case of purely random disorder in higher dimensions. Localization is clearly demonstrated through investigations of the transport properties and spatial and momentum distributions. We characterize the crossover, finding that the critical disorder strength scales with the tunnelling energy of the atoms in the lattice. This controllable system may be used to investigate the interplay of disorder and interaction (ref. 7 and references therein), and to explore exotic quantum phases.

6.
Science ; 297(5590): 2240-3, 2002 Sep 27.
Article in English | MEDLINE | ID: mdl-12202686

ABSTRACT

A degenerate gas of identical fermions is brought to collapse by the interaction with a Bose-Einstein condensate. We used an atomic mixture of fermionic potassium-40 and bosonic rubidium-87, in which the strong interspecies attraction leads to an instability above a critical number of particles. The observed phenomenon suggests a direction for manipulating fermion-fermion interactions on the route to superfluidity.

SELECTION OF CITATIONS
SEARCH DETAIL
...