Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 800
Filter
1.
BJUI Compass ; 5(7): 668-674, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39022661

ABSTRACT

Objectives: The observational 'Feeling Hot' study aims to evaluate the feasibility of employing overnight penile temperature measurements for the detection of nocturnal erections, thereby contributing to the advancement and modernization of a non-invasive diagnostic system for erectile dysfunction. Subjects/Patients and Methods: In this proof-of-concept study, 10 healthy men aged 20-25 were recruited, following the methodology outlined in the 'Staying Hot' study by Torenvlied et al. Participants underwent ambulatory overnight penile temperature measurements concurrent with RigiScan recordings. Key outcome measures included baseline and peak penile temperatures during RigiScan-annotated nocturnal erections. Reference measurements of the thigh temperature were also taken to assess nocturnal temperature variations. Results: Statistically significant penile temperature increases (p = 0.008, n = 9) were observed during nocturnal erections, with an average elevation of 1.47°C noted during the initial erections. This underscores the practical utility of penile temperature measurements in detecting erection onset. Challenges arose in accurately determining erection duration and subsequent erection onsets due to the persistence of elevated temperatures following initial erections, termed the 'Staying Hot effect'. Reference thigh temperature measurements aided in addressing this challenge. Conclusion: Examining overnight penile temperature alongside simultaneous RigiScan recordings has yielded valuable insights into the viability of using the temperature methodology for detecting nocturnal erections. The 'Feeling Hot' study findings demonstrate significant penile temperature elevation during nocturnal erections in healthy young men, highlighting the potential of integrating this measurement methodology into the design of a modernized tool for ambulatory erectile dysfunction diagnostics. Further development of an advanced sensor system to comprehensively assess erection duration and quality is essential for enhancing clinical applicability.

2.
Structure ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38908376

ABSTRACT

The epidermal growth factor receptor (EGFR) is a well-known oncogenic driver in lung and other cancers. In glioblastoma multiforme (GBM), the EGFR deletion variant III (EGFRvIII) is frequently found alongside EGFR amplification. Agents targeting the EGFR axis have shown limited clinical benefits in GBM and the role of EGFRvIII in GBM is poorly understood. To shed light on the role of EGFRvIII and its potential as a therapeutic target, we determined X-ray crystal structures of a monomeric EGFRvIII extracellular region (ECR). The EGFRvIII ECR resembles the unliganded conformation of EGFR, including the orientation of the C-terminal region of domain II. Domain II is mostly disordered, but the ECR structure is compact. We selected a nanobody with preferential binding to EGFRvIII relative to EGFR and structurally defined an epitope on domain IV that is occluded in the unliganded intact EGFR. These findings suggest new avenues for EGFRvIII targeting in GBM.

3.
Kidney Int ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901604

ABSTRACT

Pharmacologic interventions to slow chronic kidney disease progression, such as ACE-inhibitors, angiotensin receptor blockers, or sodium glucose co-transporter 2 inhibitors, often produce acute treatment effects on glomerular filtration rate (GFR) that differ from their long-term chronic treatment effects. Observational studies assessing the implications of acute effects cannot distinguish acute effects from GFR changes unrelated to the treatment. Here, we performed meta-regression analysis of multiple trials to isolate acute effects to determine their long-term implications. In 64 randomized controlled trials (RCTs), enrolling 154,045 participants, we estimated acute effects as the mean between-group difference in GFR slope from baseline to three months, effects on chronic GFR slope (starting at three months after randomization), and effects on three composite kidney endpoints defined by kidney failure (GFR 15 ml/min/1.73m2 or less, chronic dialysis, or kidney transplantation) or sustained GFR declines of 30%, 40% or 57% decline, respectively. We used Bayesian meta-regression to relate acute effects with treatment effects on chronic slope and the composite kidney endpoints. Overall, acute effects were not associated with treatment effects on chronic slope. Acute effects were associated with the treatment effects on composite kidney outcomes such that larger negative acute effects were associated with lesser beneficial effects on the composite kidney endpoints. Associations were stronger when the kidney composite endpoints were defined by smaller thresholds of GFR decline (30% or 40%). Results were similar in a subgroup of interventions with supposedly hemodynamic effects that acutely reduce GFR. For studies with GFR 60 mL/min/1.73m2 or under, negative acute effects were associated with larger beneficial effects on chronic GFR slope. Thus, our data from a large and diverse set of RCTs suggests that acute effects of interventions may influence the treatment effect on clinical kidney outcomes.

4.
EBioMedicine ; 105: 105219, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38941955

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a tumour entity with unmet medical need. To assess the therapeutic potential of oncolytic virotherapy (OVT) against PDAC, different oncolytic viruses (OVs) are currently investigated in clinical trials. However, systematic comparisons of these different OVs in terms of efficacy against PDAC and biomarkers predicting therapeutic response are lacking. METHODS: We screened fourteen patient-derived PDAC cultures which reflect the intra- and intertumoural heterogeneity of PDAC for their sensitivity to five clinically relevant OVs, namely serotype 5 adenovirus Ad5-hTERT, herpes virus T-VEC, measles vaccine strain MV-NIS, reovirus jin-3, and protoparvovirus H-1PV. Live cell analysis, quantification of viral genome/gene expression, cell viability as well as cytotoxicity assays and titration of viral progeny were conducted. Transcriptome profiling was employed to identify potential predictive biomarkers for response to OV treatment. FINDINGS: Patient-derived PDAC cultures showed individual response patterns to OV treatment. Twelve of fourteen cultures were responsive to at least one OV, with no single OV proving superior or inferior across all cultures. Known host factors for distinct viruses were retrieved as potential biomarkers. Compared to the classical molecular subtype, the quasi-mesenchymal or basal-like subtype of PDAC was found to be more sensitive to H-1PV, jin-3, and T-VEC. Generally, expression of viral entry receptors did not correlate with sensitivity to OV treatment, with one exception: Expression of Galectin-1 (LGALS1), a factor involved in H-1PV entry, positively correlated with H-1PV induced cell killing. Rather, cellular pathways controlling immunological, metabolic and proliferative signaling appeared to determine outcome. For instance, high baseline expression of interferon-stimulated genes (ISGs) correlated with relative resistance to oncolytic measles virus, whereas low cyclic GMP-AMP synthase (cGAS) expression was associated with exceptional response. Combination treatment of MV-NIS with a cGAS inhibitor improved tumour cell killing in several PDAC cultures and cells overexpressing cGAS were found to be less sensitive to MV oncolysis. INTERPRETATION: Considering the heterogeneity of PDAC and the complexity of biological therapies such as OVs, no single biomarker can explain the spectrum of response patterns. For selection of a particular OV, PDAC molecular subtype, ISG expression as well as activation of distinct signaling and metabolic pathways should be considered. Combination therapies can overcome resistance in specific constellations. Overall, oncolytic virotherapy is a viable treatment option for PDAC, which warrants further development. This study highlights the need for personalised treatment in OVT. By providing all primary data, this study provides a rich source and guidance for ongoing developments. FUNDING: German National Science Foundation (Deutsche Forschungsgemeinschaft, DFG), German Cancer Aid (Deutsche Krebshilfe), German National Academic Scholarship Foundation (Studienstiftung des deutschen Volkes), Survival with Pancreatic Cancer Foundation.


Subject(s)
Biomarkers, Tumor , Oncolytic Virotherapy , Oncolytic Viruses , Pancreatic Neoplasms , Humans , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/metabolism , Gene Expression Profiling , Cell Line, Tumor , Cell Survival , Tumor Cells, Cultured
5.
Biomedicines ; 12(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791049

ABSTRACT

DNA methyltransferase 3A (DNMT3A) and isocitrate dehydrogenase 1 and 2 (IDH1/2) are genes involved in epigenetic regulation, each mutated in 7-23% of patients with acute myeloid leukemia. Here, we investigated whether hotspot mutations in these genes encode neoantigens that can be targeted by immunotherapy. Five human B-lymphoblastoid cell lines expressing common HLA class I alleles were transduced with a minigene construct containing mutations that often occur in DNMT3A or IDH1/2. From these minigene-transduced cell lines, peptides were eluted from HLA class I alleles and analyzed using tandem mass spectrometry. The resulting data are available via ProteomeXchange under the identifier PXD050560. Mass spectrometry revealed an HLA-A*01:01-binding DNMT3AR882H peptide and an HLA-B*07:02-binding IDH2R140Q peptide as potential neoantigens. For these neopeptides, peptide-HLA tetramers were produced to search for specific T-cells in healthy individuals. Various T-cell clones were isolated showing specific reactivity against cell lines transduced with full-length DNMT3AR882H or IDH2R140Q genes, while cell lines transduced with wildtype genes were not recognized. One T-cell clone for DNMT3AR882H also reacted against patient-derived acute myeloid leukemia cells with the mutation, while patient samples without the mutation were not recognized, thereby validating the surface presentation of a DNMT3AR882H neoantigen that can potentially be targeted in acute myeloid leukemia via immunotherapy.

6.
Mol Ther Oncol ; 32(2): 200804, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38694569

ABSTRACT

Despite decades of research, the prognosis of high-grade pediatric brain tumors (PBTs) remains dismal; however, recent cases of favorable clinical responses were documented in clinical trials using oncolytic viruses (OVs). In the current study, we employed four different species of OVs: adenovirus Delta24-RGD, herpes simplex virus rQNestin34.5v1, reovirus R124, and the non-virulent Newcastle disease virus rNDV-F0-GFP against three entities of PBTs (high-grade gliomas, atypical teratoid/rhabdoid tumors, and ependymomas) to determine their in vitro efficacy. These four OVs were screened on 14 patient-derived PBT cell cultures and the degree of oncolysis was assessed using an ATP-based assay. Subsequently, the observed viral efficacies were correlated to whole transcriptome data and Gene Ontology analysis was performed. Although no significant tumor type-specific OV efficacy was observed, the analysis revealed the intrinsic biological processes that associated with OV efficacy. The predictive power of the identified expression profiles was further validated in vitro by screening additional PBTs. In summary, our results demonstrate OV susceptibility of multiple patient-derived PBT entities and the ability to predict in vitro responses to OVs using unique expression profiles. Such profiles may hold promise for future OV preselection with effective oncolytic potency in a specific tumor, therewith potentially improving OV responses.

8.
Acta Physiol (Oxf) ; 240(7): e14145, 2024 07.
Article in English | MEDLINE | ID: mdl-38647279

ABSTRACT

AIMS: Active cigarette smoking is a major risk factor for chronic obstructive pulmonary disease that remains elevated after cessation. Skeletal muscle dysfunction has been well documented after smoking, but little is known about cardiac adaptations to cigarette smoking. The underlying cellular and molecular cardiac adaptations, independent of confounding lifestyle factors, and time course of reversibility by smoking cessation remain unclear. We hypothesized that smoking negatively affects cardiac metabolism and induces local inflammation in mice, which do not readily reverse upon 2-week smoking cessation. METHODS: Mice were exposed to air or cigarette smoke for 14 weeks with or without 1- or 2-week smoke cessation. We measured cardiac mitochondrial respiration by high-resolution respirometry, cardiac mitochondrial density, abundance of mitochondrial supercomplexes by electrophoresis, and capillarization, fibrosis, and macrophage infiltration by immunohistology, and performed cardiac metabolome and lipidome analysis by mass spectrometry. RESULTS: Mitochondrial protein, supercomplex content, and respiration (all p < 0.03) were lower after smoking, which were largely reversed within 2-week smoking cessation. Metabolome and lipidome analyses revealed alterations in mitochondrial metabolism, a shift from fatty acid to glucose metabolism, which did not revert to control upon smoking cessation. Capillary density was not different after smoking but increased after smoking cessation (p = 0.02). Macrophage infiltration and fibrosis (p < 0.04) were higher after smoking but did not revert to control upon smoking cessation. CONCLUSIONS: While cigarette-impaired smoking-induced cardiac mitochondrial function was reversed by smoking cessation, the remaining fibrosis and macrophage infiltration may contribute to the increased risk of cardiovascular events after smoking cessation.


Subject(s)
Smoking Cessation , Animals , Mice , Male , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Ventricular Remodeling
9.
Sci Rep ; 14(1): 5646, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454017

ABSTRACT

Brain tumour microstructure is potentially predictive of changes following treatment to cognitive functions subserved by the functional networks in which they are embedded. To test this hypothesis, intra-tumoural microstructure was quantified from diffusion-weighted MRI to identify which tumour subregions (if any) had a greater impact on participants' cognitive recovery after surgical resection. Additionally, we studied the role of tumour microstructure in the functional interaction between the tumour and the rest of the brain. Sixteen patients (22-56 years, 7 females) with brain tumours located in or near speech-eloquent areas of the brain were included in the analyses. Two different approaches were adopted for tumour segmentation from a multishell diffusion MRI acquisition: the first used a two-dimensional four group partition of feature space, whilst the second used data-driven clustering with Gaussian mixture modelling. For each approach, we assessed the capability of tumour microstructure to predict participants' cognitive outcomes after surgery and the strength of association between the BOLD signal of individual tumour subregions and the global BOLD signal. With both methodologies, the volumes of partially overlapped subregions within the tumour significantly predicted cognitive decline in verbal skills after surgery. We also found that these particular subregions were among those that showed greater functional interaction with the unaffected cortex. Our results indicate that tumour microstructure measured by MRI multishell diffusion is associated with cognitive recovery after surgery.


Subject(s)
Brain Neoplasms , Cognitive Dysfunction , Female , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Cognition , Diffusion Magnetic Resonance Imaging/methods , Cerebral Cortex/pathology , Brain/pathology
10.
Vaccines (Basel) ; 12(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543963

ABSTRACT

(1) Background: Some individuals are more susceptible to developing respiratory tract infections (RTIs) or coronavirus disease (COVID-19) than others. The aim of this work was to identify risk factors for symptomatic RTIs including COVID-19 and symptomatic COVID-19 during the coronavirus pandemic by using infection incidence, participant baseline, and regional COVID-19 burden data. (2) Methods: Data from a prospective study of 1000 frontline healthcare workers randomized to Bacillus Calmette-Guérin vaccination or placebo, and followed for one year, was analyzed. Parametric time-to-event analysis was performed to identify the risk factors associated with (a) non-specific symptomatic respiratory tract infections including COVID-19 (RTIs+COVID-19) and (b) symptomatic RTIs confirmed as COVID-19 using a polymerase chain reaction or antigen test (COVID-19). (3) Results: Job description of doctor or nurse (median hazard ratio [HR] 1.541 and 95% confidence interval [CI] 1.299-1.822), the reported COVID-19 burden (median HR 1.361 and 95% CI 1.260-1.469 for 1.4 COVID-19 cases per 10,000 capita), or a BMI > 30 kg/m2 (median HR 1.238 and 95% CI 1.132-1.336 for BMI of 35.4 kg/m2) increased the probability of RTIs+COVID-19, while positive SARS-CoV-2 serology at enrollment (median HR 0.583 and 95% CI 0.449-0.764) had the opposite effect. The reported COVID-19 burden (median HR 2.372 and 95% CI 2.116-2.662 for 1.4 COVID-19 cases per 10,000 capita) and a job description of doctor or nurse (median HR 1.679 and 95% CI 1.253-2.256) increased the probability of developing COVID-19, while smoking (median HR 0.428 and 95% CI 0.284-0.648) and positive SARS-CoV-2 serology at enrollment (median HR 0.076 and 95% CI 0.026-0.212) decreased it. (4) Conclusions: Nurses and doctors with obesity had the highest probability of developing RTIs including COVID-19. Non-smoking nurses and doctors had the highest probability of developing COVID-19 specifically. The reported COVID-19 burden increased the event probability, while positive SARS-CoV-2 IgG serology at enrollment decreased the probability of RTIs including COVID-19, and COVID-19 specifically.

11.
Cell Rep Med ; 5(3): 101465, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38460518

ABSTRACT

The manipulation of T cell metabolism to enhance anti-tumor activity is an area of active investigation. Here, we report that activating the amino acid starvation response in effector CD8+ T cells ex vivo using the general control non-depressible 2 (GCN2) agonist halofuginone (halo) enhances oxidative metabolism and effector function. Mechanistically, we identified autophagy coupled with the CD98-mTOR axis as key downstream mediators of the phenotype induced by halo treatment. The adoptive transfer of halo-treated CD8+ T cells into tumor-bearing mice led to robust tumor control and curative responses. Halo-treated T cells synergized in vivo with a 4-1BB agonistic antibody to control tumor growth in a mouse model resistant to immunotherapy. Importantly, treatment of human CD8+ T cells with halo resulted in similar metabolic and functional reprogramming. These findings demonstrate that activating the amino acid starvation response with the GCN2 agonist halo can enhance T cell metabolism and anti-tumor activity.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Animals , Mice , Immunotherapy, Adoptive/methods , Neoplasms/pathology , Immunotherapy , Amino Acids
12.
Adv Healthc Mater ; 13(17): e2303888, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38451476

ABSTRACT

Current vascular access options require frequent interventions. In situ tissue engineering (TE) may overcome these limitations by combining the initial success of synthetic grafts with long-term advantages of autologous vessels by using biodegradable grafts that transform into autologous vascular tissue at the site of implantation. Scaffolds (6 mm-Ø) made of supramolecular polycarbonate-bisurea (PC-BU), with a polycaprolactone (PCL) anti-kinking-coil, are implanted between the carotid artery and jugular vein in goats. A subset is bio-functionalized using bisurea-modified-Stromal cell-derived factor-1α (SDF1α) derived peptides and ePTFE grafts as controls. Grafts are explanted after 1 and 3 months, and evaluated for material degradation, tissue formation, compliance, and patency. At 3 months, the scaffold is resorbed and replaced by vascular neo-tissue, including elastin, contractile markers, and endothelial lining. No dilations, ruptures, or aneurysms are observed and grafts are successfully cannulated at termination. SDF-1α-peptide-biofunctionalization does not influence outcomes. Patency is lower in TE grafts (50%) compared to controls (100% patency), predominantly caused by intimal hyperplasia. Rapid remodeling of a synthetic, biodegradable vascular scaffold into a living, compliant arteriovenous fistula is demonstrated in a large animal model. Despite lower patency compared to ePTFE, transformation into autologous and compliant living tissue with self-healing capacity may have long-term advantages.


Subject(s)
Blood Vessel Prosthesis , Goats , Animals , Tissue Scaffolds/chemistry , Absorbable Implants , Arteriovenous Fistula , Polyesters/chemistry , Carotid Arteries/surgery , Tissue Engineering/methods , Chemokine CXCL12/pharmacology , Chemokine CXCL12/metabolism , Vascular Patency
13.
Nanoscale Horiz ; 9(4): 544-554, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38323517

ABSTRACT

Current methodology used to investigate how shifts in brain states associated with regional cerebral blood volume (CBV) change in deep brain areas, are limited by either the spatiotemporal resolution of the CBV techniques, and/or compatibility with electrophysiological recordings; particularly in relation to spontaneous brain activity and the study of individual events. Additionally, infraslow brain signals (<0.1 Hz), including spreading depolarisations, DC-shifts and infraslow oscillations (ISO), are poorly captured by traditional AC-coupled electrographic recordings; yet these very slow brain signals can profoundly change CBV. To gain an improved understanding of how infraslow brain signals couple to CBV we present a new method for concurrent CBV with wide bandwidth electrophysiological mapping using simultaneous functional ultrasound imaging (fUS) and graphene-based field effect transistor (gFET) DC-coupled electrophysiological acquisitions. To validate the feasibility of this methodology visually-evoked neurovascular coupling (NVC) responses were examined. gFET recordings are not affected by concurrent fUS imaging, and epidural placement of gFET arrays within the imaging window did not deteriorate fUS signal quality. To examine directly the impact of infra-slow potential shifts on CBV, cortical spreading depolarisations (CSDs) were induced. A biphasic pattern of decreased, followed by increased CBV, propagating throughout the ipsilateral cortex, and a delayed decrease in deeper subcortical brain regions was observed. In a model of acute seizures, CBV oscillations were observed prior to seizure initiation. Individual seizures occurred on the rising phase of both infraslow brain signal and CBV oscillations. When seizures co-occurred with CSDs, CBV responses were larger in amplitude, with delayed CBV decreases in subcortical structures. Overall, our data demonstrate that gFETs are highly compatible with fUS and allow concurrent examination of wide bandwidth electrophysiology and CBV. This graphene-enabled technological advance has the potential to improve our understanding of how infraslow brain signals relate to CBV changes in control and pathological brain states.


Subject(s)
Graphite , Humans , Brain/diagnostic imaging , Seizures , Electrophysiology , Cerebrovascular Circulation/physiology , Ultrasonography
14.
Nat Commun ; 15(1): 17, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177128

ABSTRACT

A subgroup of patients infected with SARS-CoV-2 remain symptomatic over three months after infection. A distinctive symptom of patients with long COVID is post-exertional malaise, which is associated with a worsening of fatigue- and pain-related symptoms after acute mental or physical exercise, but its underlying pathophysiology is unclear. With this longitudinal case-control study (NCT05225688), we provide new insights into the pathophysiology of post-exertional malaise in patients with long COVID. We show that skeletal muscle structure is associated with a lower exercise capacity in patients, and local and systemic metabolic disturbances, severe exercise-induced myopathy and tissue infiltration of amyloid-containing deposits in skeletal muscles of patients with long COVID worsen after induction of post-exertional malaise. This study highlights novel pathways that help to understand the pathophysiology of post-exertional malaise in patients suffering from long COVID and other post-infectious diseases.


Subject(s)
COVID-19 , Musculoskeletal Abnormalities , Humans , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Case-Control Studies , COVID-19/complications , Fatigue/etiology , Muscle, Skeletal , Pain , Plaque, Amyloid
15.
Vascul Pharmacol ; 154: 107279, 2024 03.
Article in English | MEDLINE | ID: mdl-38272196

ABSTRACT

The antibiotic doxycycline is known to inhibit inflammation and was therefore considered as a therapeutic to prevent abdominal aortic aneurysm (AAA) growth. Yet mitochondrial dysfunction is a key-characteristic of clinical AAA disease. We hypothesize that doxycycline impairs mitochondrial function in the aorta and aortic smooth muscle cells (SMCs). Doxycycline induced mitonuclear imbalance, reduced proliferation and diminished expression of typical contractile smooth muscle cell (SMC) proteins. To understand the underlying mechanism, we studied krüppel-like factor 4 (KLF4). The expression of this transcription factor was enhanced in SMCs after doxycycline treatment. Knockdown of KLF4, however, did not affect the doxycycline-induced SMC phenotypic changes. Then we used the bioenergetics drug elamipretide (SS-31). Doxycycline-induced loss of SMC contractility markers was not rescued, but mitochondrial genes and mitochondrial connectivity improved upon elamipretide. Thus while doxycycline is anti-inflammatory, it also induces mitochondrial dysfunction in aortic SMCs and causes SMC phenotypic switching, potentially contributing to aortic aneurysm pathology. The drug elamipretide helps mitigate the harmful effects of doxycycline on mitochondrial function in aortic SMC, and may be of interest for treatment of aneurysm diseases with pre-existing mitochondrial dysfunction.


Subject(s)
Aortic Aneurysm, Abdominal , Mitochondrial Diseases , Humans , Doxycycline/adverse effects , Doxycycline/metabolism , Aorta/metabolism , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/prevention & control , Aortic Aneurysm, Abdominal/genetics , Myocytes, Smooth Muscle/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology
17.
Am J Physiol Endocrinol Metab ; 326(3): E277-E289, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38231001

ABSTRACT

Although the mechanisms underpinning short-term muscle disuse atrophy and associated insulin resistance remain to be elucidated, perturbed lipid metabolism might be involved. Our aim was to determine the impact of acipimox administration [i.e., pharmacologically lowering circulating nonesterified fatty acid (NEFA) availability] on muscle amino acid metabolism and insulin sensitivity during short-term disuse. Eighteen healthy individuals (age: 22 ± 1 years; body mass index: 24.0 ± 0.6 kg·m-2) underwent 2 days forearm immobilization with placebo (PLA; n = 9) or acipimox (ACI; 250 mg Olbetam; n = 9) ingestion four times daily. Before and after immobilization, whole body glucose disposal rate (GDR), forearm glucose uptake (FGU; i.e., muscle insulin sensitivity), and amino acid kinetics were measured under fasting and hyperinsulinemic-hyperaminoacidemic-euglycemic clamp conditions using forearm balance and l-[ring-2H5]-phenylalanine infusions. Immobilization did not affect GDR but decreased insulin-stimulated FGU in both groups, more so in ACI (from 53 ± 8 to 12 ± 5 µmol·min-1) than PLA (from 52 ± 8 to 38 ± 13 µmol·min-1; P < 0.05). In ACI only, and in contrast to our hypothesis, fasting arterialized NEFA concentrations were elevated to 1.3 ± 0.1 mmol·L-1 postimmobilization (P < 0.05), and fasting forearm NEFA balance increased approximately fourfold (P = 0.10). Forearm phenylalanine net balance decreased following immobilization (P < 0.10), driven by an increased rate of appearance [from 32 ± 5 (fasting) and 21 ± 4 (clamp) preimmobilization to 53 ± 8 and 31 ± 4 postimmobilization; P < 0.05] while the rate of disappearance was unaffected by disuse or acipimox. Disuse-induced insulin resistance is accompanied by early signs of negative net muscle amino acid balance, which is driven by accelerated muscle amino acid efflux. Acutely elevated NEFA availability worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.NEW & NOTEWORTHY We demonstrate that 2 days of forearm cast immobilization in healthy young volunteers leads to the rapid development of insulin resistance, which is accompanied by accelerated muscle amino acid efflux in the absence of impaired muscle amino acid uptake. Acutely elevated fasting nonesterified fatty acid (NEFA) availability as a result of acipimox supplementation worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.


Subject(s)
Insulin Resistance , Pyrazines , Humans , Young Adult , Amino Acids/metabolism , Fatty Acids, Nonesterified/metabolism , Forearm , Glucose/metabolism , Hypolipidemic Agents/metabolism , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Insulin/metabolism , Muscles/metabolism , Phenylalanine/metabolism , Polyesters/metabolism , Volunteers
18.
Cell Rep Med ; 5(1): 101372, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38232697

ABSTRACT

Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.


Subject(s)
Insulin Resistance , Humans , Insulin Resistance/physiology , Bed Rest/adverse effects , Muscle, Skeletal/metabolism , Energy Metabolism/physiology , Glycogen/metabolism
19.
J Environ Manage ; 352: 120007, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38184875

ABSTRACT

While forest management commonly seeks to increase carbon (C) capture and sequestration, in some settings, a high density of C storage may be detrimental to other land uses and ecosystem services. We study a forested, drinking-water-supply watershed to determine the effects of forest management on C storage with the implicit understanding that greater storage of C will lead to increased quantity of carbon exported hydrologically into a source-water reservoir. Using a custom implementation of CBM-CFS3, a Canadian model to simulate C transformations and movement in forested systems, and a custom forest disturbance and management model, we simulate various management scenarios and their C outcomes. The largest forest C pool, mineral soils, is very slow to change and manipulating DOC export through this pool would likely not be feasible within human management timescales. Other pools, in which C has lower residence time and from which C is more readily mobilized, are a more promising area for future research into hydrologic DOC export under varying management regimes. Our findings indicate that management activities can serve to reduce forest C storage, but further research is required to connect these outcomes to hydrologic export.


Subject(s)
Carbon , Ecosystem , Humans , Carbon/analysis , Canada , Forests , Water
20.
Sci Total Environ ; 917: 170476, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38290679

ABSTRACT

Proliferations of benthic cyanobacteria are increasingly in the public eye, with rising animal deaths associated with benthic rather than planktonic blooms. In early June 2021, two dogs died after consuming material on the shore of Shubenacadie Grand Lake, Nova Scotia. Preliminary investigations indicated anatoxins produced by benthic cyanobacterial mats were responsible for the deaths. In this study, we monitored the growth of a toxic benthic cyanobacterial species (Microcoleus sp.) along a stream-lake continuum where the canine poisonings occurred. We found that the species was able to proliferate in both lentic and lotic environments, but temporal growth dynamics and the predominant sub-species were influenced by habitat type, and differed with hydrodynamic setting, nutrient and sunlight availability. Toxin concentration was greatest in cyanobacterial mats growing in the oligotrophic lakeshore environment (maximum measured total anatoxins (ATXs) >20 mg·kg-1 wet weight). This corresponded with a shift in the profile of ATX analogues, which also indicated changing sub-species dominance along the stream-lake transition.


Subject(s)
Bacterial Toxins , Cyanobacteria Toxins , Cyanobacteria , Tropanes , Dogs , Animals , Rivers/microbiology , Bacterial Toxins/toxicity , Lakes/microbiology , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...