Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Foods ; 13(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397569

ABSTRACT

Lithium (Li) is present in human nutrition based on food intake, and several studies recommend it for treating mood disorders, even if the biological proprieties and biochemical mechanisms represent the basis for its use as an essential element. The Li content was evaluated using the inductively coupled plasma mass spectrometry technique (ICP-MS) in 1071 food and beverage samples from the Romanian market. The results show that Li had a decreasing mean concentration in the food samples as follows: vegetables leafy > bulbous > fructose > leguminous > egg whites > root vegetables > milk products > egg yolks > meats. Approximately a quarter of all data from each dataset category was extreme values (range between the third quartile and maximum value), with only 10% below the detection limit. Mean Li concentration indicated higher values in red wine, white wines, beers, and fruit juice and lower in ciders and bottled waters. A particular interest was addressed to plants for teas and coffee seeds, which showed narrow amounts of Li. For both food and beverages, two similar matrices, including egg whites and yolks and white and red wines, were found to have significant differences, which explains the high variability of Li uptake in various matrices. For 99.65% of the analyzed samples, the estimated daily intake of Li was below the provisional subchronic and chronic reference dose (2 µg/kgbw/day) for adverse effects in several organs and systems. Even so, a risk occurs in consuming bulbous vegetables (Li > 13.47 mg/kg) and fructose solano vegetables (Li > 11.33 mg/kg). The present study's findings indicate that ingesting most of the analyzed beverages and food samples could be considered safe, even if future studies regarding Li content, nutritional aspects, and human cohort diseases must be conducted.

2.
Toxics ; 11(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37999552

ABSTRACT

Egg is a food product of high nutritional quality, extensively consumed worldwide. The objectives of this study were the determination of the elemental profile in eggs (egg white, yolk, and eggshell), the estimation of the non-carcinogenic health risk associated with the presence of heavy metals in investigated egg samples, and the development of statistical models to identify the best predictors for the differentiation of egg components. The assessments were carried out in a total set of 210 samples, comprising home-produced and commercial eggs, using inductively coupled plasma mass spectrometry. The results suggested measurable differences amongst hen eggs coming from different husbandry systems. The statistical models employed in this study identified several elemental markers that can be used for discriminating between market and local producer samples. The non-carcinogenic risk related to the consumption of the analyzed egg samples was generally in the safe range for the consumers, below the maximum permitted levels set by Romanian and European legislation. Food contamination is a public health problem worldwide, and the risk associated with exposure to trace metals from food products has aroused widespread concern in human health, so assessing the heavy metal content in food products is mandatory to evaluate the health risk.

3.
Polymers (Basel) ; 14(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36145880

ABSTRACT

Worldwide, concerns about heavy metal contamination from manmade and natural sources have increased in recent decades. Metals released into the environment threaten human health, mostly due to their integration into the food chain and persistence. Nature offers a large range of materials with different functionalities, providing also a source of inspiration for scientists working in the field of material synthesis. In the current study, a new type of copolymer is introduced, which was synthesized for the first time by combining chitosan and poly(benzofurane-co-arylacetic acid), for use in the adsorption of toxic heavy metals. Such naturally derived materials can be easily and inexpensively synthesized and separated by simple filtration, thus becoming an attractive alternative solution for wastewater treatment. The new copolymer was investigated by solid-state nuclear magnetic resonance, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photon electron microscopy. Flame atomic absorption spectrometry was utilized to measure heavy metal concentrations in the investigated samples. Equilibrium isotherms, kinetic 3D models, and artificial neural networks were applied to the experimental data to characterize the adsorption process. Additional adsorption experiments were performed using metal-contaminated water samples collected in two seasons (summer and winter) from two former mining areas in Romania (Roșia Montana and Novaț-Borșa). The results demonstrated high (51-97%) adsorption efficiency for Pb and excellent (95-100%) for Cd, after testing on stock solutions and contaminated water samples. The recyclability study of the copolymer indicated that the removal efficiency decreased to 89% for Pb and 58% for Cd after seven adsorption-desorption cycles.

4.
Nutrients ; 14(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35745094

ABSTRACT

Natural ecosystems are polluted with various contaminants, and among these heavy metals raise concerns due to their side effects on both environment and human health. An investigation was conducted on essential oil samples, comparing similar products between seven producers, and the results indicated a wide variation of metal content. The recommended limits imposed by European Union regulations for medicinal plants are exceeded only in Mentha × pipperita (Adams, 0.61 mg/kg). Except for Thymus vulgaris, the multivariate analysis showed a strong correlation between toxic and microelements (p < 0.001). We verified plant species−specific bioaccumulation patterns with non-metric multidimensional scaling analysis. The model showed that Adams, Doterra, Hypericum, and Steaua Divina essential oils originated from plants containing high micro and macroelement (Cu, Mn, Mg, Na) levels. We noted that the cancer risk values for Ni were the highest (2.02 × 10−9−7.89 × 10−7). Based on the target hazard quotient, three groups of elements were associated with a possible risk to human health, including As, Hg, and Cd in the first group, Cr, Mn, Ni, and Co in the second, and Zn and Al in the third. Additionally, the challenge of coupling inter-element relationships through a network plot analysis shows a considerable probability of associating toxic metals with micronutrients, which can address cumulative risks for human consumers.


Subject(s)
Mercury , Metals, Heavy , Oils, Volatile , Ecosystem , Environmental Monitoring/methods , Humans , Mercury/analysis , Risk Assessment
5.
Molecules ; 26(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885663

ABSTRACT

The present study was conducted to quantify the daily intake and target hazard quotient of four essential elements, namely, chromium, cobalt, nickel, and copper, and four toxic trace elements, mercury, cadmium, lead, and arsenic. Thirty food items were assigned to five food categories (seeds, leaves, powders, beans, and fruits) and analyzed using inductively coupled plasma-mass spectrometry. Factor analysis after principal component extraction revealed common metal patterns in all foodstuffs, and using hierarchical cluster analysis, an association map was created to illustrate their similarity. The results indicate that the internationally recommended dietary allowance was exceeded for Cu and Cr in 27 and 29 foodstuffs, respectively. According to the tolerable upper level for Ni and Cu, everyday consumption of these elements through repeated consumption of seeds (fennel, opium poppy, and cannabis) and fruits (almond) can have adverse health effects. Moreover, a robust correlation between Cu and As (p < 0.001) was established when all samples were analyzed. Principal component analysis (PCA) demonstrated an association between Pb, As, Co, and Ni in one group and Cr, Cu, Hg, and Cd in a second group, comprising 56.85% of the total variance. For all elements investigated, the cancer risk index was within safe limits, highlighting that lifetime consumption does not increase the risk of carcinogens.


Subject(s)
Arsenic/analysis , Cadmium/analysis , Chromium/analysis , Cobalt/analysis , Copper/analysis , Lead/analysis , Mercury/analysis , Nickel/analysis , Spectrophotometry, Atomic/methods , Supermarkets , Trace Elements/analysis , Humans , Romania
6.
Article in English | MEDLINE | ID: mdl-34574397

ABSTRACT

Globally, the consumption of herbal supplements is on an upward trend. As the food supplement industry thrives, so does the need for consumers' awareness of health risks. This contribution is grounded on two assumptions. Firstly, not always "wild" is a food quality attribute, and secondly, the food chain is judged as a noteworthy route for human exposure to soil contamination. Sea buckthorn (SBT) was selected for investigation due to its versatility. In addition to its wide therapeutic uses, it is present in ecological rehabilitation which may raise concerns regarding its safety for human consumption as a consequence of the accumulation of contaminants in the plant. The study aims to discover if the objective contamination of SBT with toxic residues is congruent with people's subjective evaluation of SBT consumption risk. A quantitative determination of heavy metals was performed by atomic absorption spectrometry. The metals abundance followed the sequence Fe > Cu > Zn > Mn > Cr > Ni > Pb > Cd. Quantitative data on consumers' subjective risk evaluations were collected through an online survey on 408 Romanians. Binary logistic shows that the consumption of SBT is predicted by the perceived effect of SBT consumption on respondents' health. The study confirms that the objective contamination of wild and cultivated SBT is in line with the perceived contamination risk. It is inferred that a joint effort of marketers, media, physicians, and pharmacists is needed to inform consumers about the risks and benefits of SBT consumption.


Subject(s)
Hippophae , Metals, Heavy , Soil Pollutants , China , Environmental Monitoring , Food Quality , Humans , Metals, Heavy/analysis , Perception , Risk Assessment , Soil , Soil Pollutants/analysis
7.
Materials (Basel) ; 14(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34443081

ABSTRACT

The compliance of crab shells traditionally used as a complex natural product for agricultural soil amendment with modern biofertilizers' quality and safety requirements was investigated. Shells waste from the Blue crab, Callinectes sapidus and the Green crab, Carcinus aestuarii were tested for macronutrients, heavy metals, bacteria content, and antimicrobial properties. Such information is crucial for further utilization of the biogenic powders for any composite formulation in added-value by-products. The calcium carbonate-rich hard tissue yield was 52.13% ± 0.015 (mean ± S.D.) and 64.71% ± 0.144 from the blue and green crabs, respectively. The contents of Pb, Ni, Zn, Cr (VI), and Cu were several orders of magnitude below the prescribed limit by EU biofertilizer legislation, with Fe, Mn (not prescribed), and As being the most abundant. The content of As and Cd from the material considered here was within limits. The shells contain no colony-forming units of Salmonella spp. and compliant levels of Escherichia coli; moreover, the shell micro-powder showed dose-dependent growth inhibition of Pseudomonas aeruginosa and Staphylococcus aureus. In summary, the waste crab shells present a complex natural product as plant biofertilizer following the circular economy concepts.

8.
J Health Pollut ; 10(27): 200908, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32874764

ABSTRACT

BACKGROUND: Air pollution has become a major problem around the world and is increasingly an issue in Togo due to increased vehicular traffic. Gaseous pollutants are released by engines and are very harmful to human health and the environment. The fuels used on the major road in Togo, the N2, are adulterated with unknown contents and are of poor quality. Many of the vehicles come from neighboring countries, such as Benin, Ghana and Nigeria. OBJECTIVES: The present study aims to evaluate the pollution rate in Togo through the estimation of the concentrations of sulfur dioxide (SO2), nitrogen oxides (NOx), and particular matter (PM) on the international road, the National Road N2, in Lomé, compared to the World Health Organization's (WHO) standard limit. METHODS: The simulations of pollutant concentration were performed using the Industrial Source Complex Short Term Version 3 model, which is included in the United States Environmental Protection Agency Regulatory Model (USEPA) AERMOD View software. The meteorological averages data were obtained from the local station near the National Road N2 in Togo in 2018. Hourly averages were calculated according to the European Monitoring Evaluation Programme/European Environmental Agency air pollutant emission inventory guidebook 2016 and were processed using AERMET View and a terrain pre-processor, AERMAP. For the model, the sources of pollution were the vehicles traveling on the road segment. The source was a line volume with 20 m of width and 2 m of height. The estimation methodology covered exhaust emissions of NOx, SO2 and PM contained in the fuel. RESULTS: The simulations provided average hourly, daily and annual concentrations of the different pollutants: 71.91 µg/m3, 42.41 µg/m3,11.23 µg/m3 for SO2; 16.78 µg/m3, 9.89 µg/m3, 2.46 µg/m3 for NOx and below the detection limit, 0.62 µg/m3, 0.15 µg/m3 for PM, respectively. These results indicate that on the National Road N2 in Togo, the concentrations of SO2 were high compared to those of NOx and PM. The daily average concentration of SO2 was twice the permissible limits set by the WHO. CONCLUSIONS: Emissions obtained from the AERMOD for NOx and PM were less than the permissible limits set by the WHO, while the rate of SO2 was twice the permissible limit. The fuels used on this road were very rich in sulfur. The sulfur level in fuels must be monitored by stakeholders in Togo. COMPETING INTERESTS: The authors declare no competing financial interests.

9.
Sci Rep ; 10(1): 6668, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32296073

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Sci Rep ; 10(1): 1253, 2020 Jan 27.
Article in English | MEDLINE | ID: mdl-31988316

ABSTRACT

A mud volcano (MV) is a naturally hydrocarbon-spiked environment, as indicated by the presence of various quantities of PAHs and aromatic isotopic shifts in its sediments. Recurrent expulsion of various hydrocarbons consolidates the growth of hydrocarbonoclastic bacterial communities in the areas around MVs. In addition to the widely-known availability of biologically malleable alkanes, MVs can represent hotbeds of polyaromatic hydrocarbons (PAHs), as well - an aspect that has not been previously explored. This study measured the availability of highly recalcitrant PAHs and the isotopic signature of MV sediments both by GC-MS and δ13C analyses. Subsequently, this study highlighted both the occurrence and distribution of putative PAH-degrading bacterial OTUs using a metabarcoding technique. The putative hydrocarbonoclastic taxa incidence are the following: Enterobacteriaceae (31.5%), Methylobacteriaceae (19.9%), Bradyrhizobiaceae (16.9%), Oxalobacteraceae (10.2%), Comamonadaceae (7.6%) and Sphingomonadaceae (5.5%). Cumulatively, the results of this study indicate that MVs represent polyaromatic hydrocarbonoclastic hotbeds, as defined by both natural PAH input and high incidence of putative PAH-degrading bacterial OTUs.

11.
Environ Monit Assess ; 191(9): 591, 2019 Aug 24.
Article in English | MEDLINE | ID: mdl-31446497

ABSTRACT

Our study assessed the exposure to formaldehyde of Romanian school children in relation to the classroom indoor environment characteristics and respiratory and allergic symptoms reported in a questionnaire survey, using the data collected in the SINPHONIE (Schools Indoor Pollution and Health: Observatory Network in Europe) project. Measurements of formaldehyde and microclimate parameters were conducted in three classrooms per school, in five schools, together with one outdoor measurement at each school. Questionnaires were used to collect information on classroom characteristics and health effects among children. The indoor formaldehyde levels for a school week varied between 15.5 and 66.2 µg/m3, with a median value of 34.8 µg/m3. The adjusted odds ratios for allergy-like, asthma-like, and flu-like symptoms were 3.23 (95% CI 1.31-8.00), 2.69 (95% CI 1.04-6.97), and 2.39 (95% CI 1.04-5.50), respectively, when exposed to higher formaldehyde levels (≥ 35 µg/m3) during a school week, compared to lower formaldehyde level exposure (< 35 µg/m3). Higher levels of indoor formaldehyde were significantly associated with health symptoms in children. The high indoor formaldehyde levels were related to the use of water-resistant paint for ceiling coverings, moisture damage signs, and lower classroom natural ventilation rates.


Subject(s)
Air Pollution, Indoor/analysis , Asthma/epidemiology , Formaldehyde/analysis , Hypersensitivity/epidemiology , Inhalation Exposure/analysis , Schools , Asthma/chemically induced , Child , Female , Humans , Male , Risk Factors , Romania/epidemiology , Surveys and Questionnaires
12.
Sci Total Environ ; 660: 660-676, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30641395

ABSTRACT

The increasing contamination of fresh water resources by trace metals and persistent organic pollutants is a major environmental concern. In the present study, we investigated, for the first time, the distribution, sources and ecological risk of trace metals and organic pollutants, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), in surface sediments from a Southeastern European river (Somesu Mic River, Romania). Concentrations of Cd, Cr, Cu, Pb, Ni and Zn ranged from 0.04 to 0.4, 9.4 to 43.15, 7.2 to 65.6, 12.3 to 131.4, 14.7 to 47.7 and 42.1 to 236.8 mg kg-1 dw, respectively. Concentrations of total PAHs, PCBs and OCPs ranged from 24.8 to 575.6, 2.7 to 252.7 and 2.1 to 44.3 ng g-1 dw, respectively. Some sediment parameters, i.e., pH, total organic carbon (TOC) and total organic matter (OM) contents, played a significant role in the spatial distribution of contaminants. A combined analysis based on diagnostic ratios and multivariate analyses revealed PAHs originating mainly from pyrolytic sources. PCB compositions showed distinct contamination signatures for tri- to tetra-chlorinated PCBs, characteristic of contamination by Aroclor-1016 and -1254 technical mixtures. The dominant OCP congeners were α-HCH and p,p'-DDD, reflecting past use of technical HCHs and DDTs in agricultural practices. Metal source and pollution status was assessed using geoaccumulation index and enrichment factor, which indicate widespread pollution by Pb, Cd, Zn, Ni and Cu. The use of Sediments Quality Guidelines (SQGs), mean effect range-median quotient (m-ERM-Q) and toxic equivalent factor (TEF) indicated that the highest ecological risks occurred for PCBs and DDTs. This work presents not only initial baseline information on the extent of organic and inorganic contaminations in a river of ecological and economical interest, but also provides a diagnostic ratio/statistical combined approach that can be used to evaluate sediment quality in similar environments.

13.
Environ Monit Assess ; 191(1): 8, 2018 Dec 08.
Article in English | MEDLINE | ID: mdl-30536078

ABSTRACT

Our aim was to assess local population exposure to heavy metals resulting from soil and vegetable contamination in Tarnaveni, Romania, an area located near a former chemical factory. We collected residential soil and vegetable samples from Tarnaveni and measured chromium (Cr), lead (Pb), and manganese (Mn) levels by atomic absorption spectrometry. We evaluated the relationship between soil and vegetable metals and the distance from the shuttered chemical factory, and calculated the hazard index to assess local population metal exposure via contaminated vegetable ingestion. Soil metal concentrations ranged between 15.6 and 525.8 mg/kg for total Cr, between 25.4 and 559.5 mg/kg for Pb, and between 363.1 and 1389.6 mg/kg for Mn. We found average concentrations of 17.8 mg/kg for total Cr, 2.2 mg/kg for Pb, and 116.6 mg/kg for Mn in local vegetables. We found soil concentrations for all three metals that exceeded normal background levels according to Romanian regulations (Pb exceeded 100 mg/kg in some of the samples), as well as measurable concentrations of metals in all analyzed vegetable samples. These preliminary data underscore a need for a more extensive investigation into associated adverse health effects in the exposed population.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Vegetables/chemistry , Chromium/analysis , Environmental Monitoring/methods , Humans , Lead/analysis , Manganese/analysis , Manufacturing and Industrial Facilities , Romania
14.
PeerJ ; 4: e2448, 2016.
Article in English | MEDLINE | ID: mdl-27652000

ABSTRACT

BACKGROUND: Cancer research is a national and international priority, with the efficiency and effectiveness of current anti-tumor therapies being one of the major challenges with which physicians are faced. OBJECTIVE: To assess the impact of exposure to tobacco smoke, arsenic, and phthalates on cervical cancer treatment. METHODS: We investigated 37 patients with locally advanced cervical carcinoma who underwent chemotherapy and radiotherapy. We determined cotinine and five phthalate metabolites in urine samples collected prior to cancer treatment, by gas chromatography coupled to mass spectrometry, and urinary total arsenic by atomic absorption spectrometry with hydride generation. We used linear regression to evaluate the effects of cotinine, arsenic, and phthalates on the change in tumor size after treatment, adjusted for confounding variables. RESULTS: We detected no significant associations between urinary cotinine, arsenic, or phthalate monoesters on change in tumor size after treatment, adjusted for urine creatinine, age, baseline tumor size, and cotinine (for arsenic and phthalates). However, higher %mono-ethylhexyl phthalate (%MEHP), a putative indicator of phthalate diester metabolism, was associated with a larger change in tumor size (ß = 0.015, 95% CI [0.003-0.03], P = 0.019). CONCLUSION: We found no statistically significant association between the urinary levels of arsenic, cotinine, and phthalates metabolites and the response to cervical cancer treatment as measured by the change in tumor size. Still, our results suggested that phthalates metabolism may be associated with response to treatment for locally advanced cervical cancer. However, these observations are preliminary and will require confirmation in a larger, more definitive investigation.

15.
Environ Sci Pollut Res Int ; 23(7): 6062-73, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26062461

ABSTRACT

Information about heavy metal concentrations in food products and their dietary intake are essential for assessing the health risk of local inhabitants. The main purposes of the present study were (1) to investigate the concentrations of Zn, Cu, Pb, and Cd in several vegetables and fruits cultivated in Baia Mare mining area (Romania); (2) to assess the human health risk associated with the ingestion of contaminated vegetables and fruits by calculating the daily intake rate (DIR) and the target hazard quotient (THQ); and (3) to establish some recommendations on human diet in order to assure an improvement in food safety. The concentration order of heavy metals in the analyzed vegetable and fruit samples was Zn > Cu > Pb > Cd. The results showed the heavy metals are more likely to accumulate in vegetables (10.8-630.6 mg/kg dw for Zn, 1.4-196.6 mg/kg dw for Cu, 0.2-155.7 mg/kg dw for Pb, and 0.03-6.61 mg/kg dw for Cd) than in fruits (4.9-55.9 mg/kg dw for Zn, 1.9-24.7 mg/kg dw for Cu, 0.04-8.82 mg/kg dw for Pb, and 0.01-0.81 mg/kg dw for Cd). Parsley, kohlrabi, and lettuce proved to be high heavy metal accumulators. By calculating DIR and THQ, the data indicated that consumption of parsley, kohlrabi, and lettuce from the area on a regular basis may pose high potential health risks to local inhabitants, especially in the area located close to non-ferrous metallurgical plants (Romplumb SA and Cuprom SA) and close to Tauții de Sus tailings ponds. The DIR for Zn (85.3-231.6 µg/day kg body weight) and Cu (25.0-44.6 µg/day kg body weight) were higher in rural areas, while for Pb (0.6-3.1 µg/day kg body weight) and Cd (0.22-0.82 µg/day kg body weight), the DIR were higher in urban areas, close to the non-ferrous metallurgical plants SC Romplumb SA and SC Cuprom SA. The THQ for Zn, Cu, Pb, and Cd was higher than 5 for <1, <1, 12, and 6% of samples which indicates that those consumers may experience major health risks.


Subject(s)
Environmental Monitoring , Fruit/chemistry , Metals, Heavy/analysis , Mining , Soil Pollutants/analysis , Vegetables/chemistry , Animals , Female , Food Contamination/analysis , Food Contamination/statistics & numerical data , Horses , Humans , Metallurgy , Risk Assessment , Romania
SELECTION OF CITATIONS
SEARCH DETAIL
...