Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(31): eaba2331, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32832680

ABSTRACT

Using theory and experiments, we study the interface between two immiscible domains in a colloidal membrane composed of rigid rods of different lengths. Geometric considerations of rigid rod packing imply that a domain of sufficiently short rods in a background membrane of long rods is more susceptible to twist than the inverse structure, a long-rod domain in a short-rod membrane. The midplane tilt at the interdomain edge forces splay, which, in turn, manifests as spontaneous edge curvature with energetics controlled by the length asymmetry of constituent rods. A thermodynamic model of such tilt-curvature coupling at interdomain edges explains a number of experimental observations, including annularly shaped long-rod domains, and a nonmonotonic dependence of edge twist on domain radius. Our work shows how coupling between orientational and compositional degrees of freedom in two-dimensional fluids gives rise to complex shapes of fluid domains, analogous to shape transitions in 3D fluid vesicles.

2.
Phys Rev Lett ; 125(1): 018002, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32678628

ABSTRACT

We demonstrate that an achiral stretching force transforms disk-shaped colloidal membranes composed of chiral rods into twisted ribbons with handedness opposite the preferred twist of the rods. Using an experimental technique that enforces torque-free boundary conditions we simultaneously measure the force-extension curve and the ribbon shape. An effective theory that accounts for the membrane bending energy and uses geometric properties of the edge to model the internal liquid crystalline degrees of freedom explains both the measured force-extension curve and the force-induced twisted shape.

3.
Nano Lett ; 18(8): 4791-4795, 2018 08 08.
Article in English | MEDLINE | ID: mdl-29989824

ABSTRACT

Because of its attractive cost and yield, hierarchical assembly, in which constituent structures of lower hierarchy share a majority of components, is an appealing approach to scale up DNA self-assembly. A few strategies have already been investigated to combine preformed DNA nanostructures. In this study, we present a new hierarchical assembly method based on four-way toehold-mediated strand displacement to facilitate the combination of preformed DNA structural units. Employing such a method, we have constructed a series of higher-order structures composed of 5, 7, 9, 11, 13, and 15 preformed units respectively.

4.
J Vis Exp ; (99): e52486, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25993048

ABSTRACT

Current methods in DNA nano-architecture have successfully engineered a variety of 2D and 3D structures using principles of self-assembly. In this article, we describe detailed protocols on how to fabricate sophisticated 2D shapes through the self-assembly of uniquely addressable single-stranded DNA tiles which act as molecular pixels on a molecular canvas. Each single-stranded tile (SST) is a 42-nucleotide DNA strand composed of four concatenated modular domains which bind to four neighbors during self-assembly. The molecular canvas is a rectangle structure self-assembled from SSTs. A prescribed complex 2D shape is formed by selecting the constituent molecular pixels (SSTs) from a 310-pixel molecular canvas and then subjecting the corresponding strands to one-pot annealing. Due to the modular nature of the SST approach we demonstrate the scalability, versatility and robustness of this method. Compared with alternative methods, the SST method enables a wider selection of information polymers and sequences through the use of de novo designed and synthesized short DNA strands.


Subject(s)
DNA, Single-Stranded/chemistry , Base Sequence , Nanostructures/chemistry , Nanotechnology/methods , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...