Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 17(19): e202200700, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35972999

ABSTRACT

High-concentration operation of redox flow batteries (RFBs) is essential for increasing their energy-storage capacity, but non-acidic electrolytes struggle to achieve the high concentrations of metal ions dissolved in acid, limiting the development of energy-dense neutral pH electrolytes. We report neutral pH RFB operation of chromium 1,3-propylenediaminetetraacetate (CrPDTA) at concentrations of 1.2 M at room temperature and 1.6 M at 40 °C, demonstrating 60% higher negolyte capacity, up to 42.9 Ah L-1 , than previously reported for non-additive-utilizing solutions of this promising material. With extended full cell cycling, we demonstrate the importance of buffer selection and pH when using the Fumasep E-620(K) membrane. Finally, we expand the pH operation range of CrPDTA to pH 7, which when cycled at 100 mA cm-2 against a ferrocyanide posolyte demonstrated excellent coulombic efficiencies >99.7% and energy efficiencies >87%, while operating at almost 700 mV more negative than the thermodynamic hydrogen evolution window.

2.
Inorg Chem ; 61(23): 8752-8759, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35642903

ABSTRACT

The highly reducing CrII-(1,3-propylenediaminetetraacetate) (CrPDTA) complex (-1.1 V vs SHE) has been isolated from aqueous solution and the solid-state structure is described. The reduced CrIIPDTA complex is characterized by single-crystal X-ray diffraction, elemental analysis, infrared spectroscopy, UV-vis spectroscopy, magnetic moment, and density functional theory calculations. The concentration profile, state of charge, and pH of CrPDTA electrolyte were monitored in a flow battery system in situ by absorption spectroscopy and a pH probe. The stability of CrIIPDTA in aqueous environments is demonstrated by the ability to isolate CaCrPDTA, despite the common misconception that water spontaneously evolves hydrogen at such potentials. The reduced CrIIPDTA prevents water from coordinating to the metal center by maintaining the same coordinatively saturated pseudo-octahedral structure as the oxidized CrIIIPDTA, despite experiencing an increased geometric strain from a Jahn-Teller distortion of the high-spin CrII ion. The important difference between solvent reactivity and solvent thermodynamic window is examined by comparing the electrochemical behavior of the reduced species of CrPDTA in various organic solvents to its behavior in aqueous solution. When examined in tetrahydrofuran (THF), the reduction potential of CrPDTA is observed to be -1.19 V vs cobaltocene (-2.52 V vs ferrocene). Reduced CrPDTA in aqueous solution is also exposed to atmospheric O2 without exhibiting any decomposition of the Cr(III) or Cr(II) species. The techniques detailed provide a higher standard method of characterization for flow battery electrolyte species.

3.
Dalton Trans ; 49(45): 16047-16053, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33201166

ABSTRACT

Here, we outline some basic pitfalls in the electrochemical investigation of aqueous metal complexes and advocate for the use of bulk electrolysis in redox flow cells for electrolyte analysis. We demonstrate the methods of operation and performance of a lab scale redox flow battery (RFB), which is assembled from unmodified, commercially available material and cycled with a vanadium electrolyte in order to provide a comparative baseline of expected performance. Common misconceptions about the thermodynamic window for water splitting are addressed and further express the need to develop next-generation aqueous redox flow battery electrolytes. Although non-aqueous electrolytes are a popular approach, they suffer from distinct challenges that limit energy and power density in comparison with aqueous electrolytes. Expanding the scope of aqueous electrolytes to include metal-chelate complexes allows electrolytes to be as tailorable as organic species, while maintaining robust metal-based redox processes. A flow battery assembly and operation guide is provided to help facilitate the use of flow battery testing in the evaluation of next-generation electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...