Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Magn Reson Med ; 91(2): 842-849, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37849021

ABSTRACT

PURPOSE: To develop a flexible, lightweight, and multi-purpose integrated parallel reception, excitation, and shimming (iPRES) coil array that can conform to the subject's anatomy and perform MR imaging and localized B0 shimming in different anatomical regions with a high SNR, shimming performance, ease of positioning, and subject comfort. METHODS: A four-channel flexible iPRES coil array was constructed by enabling RF and direct currents to flow on the same flexible coil elements for imaging and shimming, respectively. Shimming experiments were performed with the coil array wrapped around the knee or neck of healthy subjects to demonstrate its high shimming performance and versatility. Additionally, its SNR and shimming performance in the knee were compared to those obtained with the coil array wrapped around a larger rigid tube designed to fit most knee sizes. RESULTS: Shimming with the coil array wrapped around the knee or neck resulted in an average reduction in B0 RMSE of 50.1% and 40.5% relative to first-order and second-order spherical harmonic shimming, respectively, and substantially reduced distortions in DWI images. In contrast, shimming the knee with the coil array wrapped around the rigid tube only provided a 29.6% reduction in B0 RMSE, whereas the SNR was reduced by 58.7%. CONCLUSION: The flexible iPRES coil array can conform to different anatomical regions and perform imaging and localized B0 shimming with a higher SNR, shimming performance, ease of positioning, and comfort compared to a rigid iPRES coil array, which should be valuable for many applications throughout the human body.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Radio Waves , Knee Joint/diagnostic imaging , Image Processing, Computer-Assisted/methods
3.
Phys Med Biol ; 68(21)2023 10 26.
Article in English | MEDLINE | ID: mdl-37816375

ABSTRACT

Objective.High-resolution MRI of the cervical spine (c-spine) and extraspinal neck region requires close-fitting receiver coils to maximize the signal-to-noise ratio (SNR). Conventional, rigid C-spine receiver coils do not adequately contour to the neck to accommodate varying body shapes, resulting in suboptimal SNR. Recent innovations in flexible surface coil array designs may provide three-dimensional (3D) bendability and conformability to optimize SNR, while improving capabilities for higher acceleration factors.Approach.This work describes the design, implementation, and preliminaryin vivotesting of a novel, conformal 23-channel receive-only flexible array for cervical and extraspinal (FACE) MRI at 3-Tesla (T), with use of high-impedance elements to enhance the coil's flexibility. Coil performance was tested by assessing SNR and geometry factors (g-factors) in a phantom compared to a conventional 21-channel head-neck-unit (HNU).In vivoimaging was performed in healthy human volunteers and patients using high-resolution c-spine and neck MRI protocols at 3T, including MR neurography (MRN).Main results.Mean SNR with the FACE was 141%-161% higher at left, right, and posterior off-isocenter positions and 4% higher at the isocenter of the phantom compared to the HNU. Parallel imaging performance was comparable for an acceleration factor (R) = 2 × 2 between the two coils, but improved forR= 3 × 3 with meang-factors ranging from 1.46-2.15 with the FACE compared to 2.36-3.62 obtained with the HNU. Preliminary human volunteer and patient testing confirmed that equivalent or superior image quality could be obtained for evaluation of osseous and soft tissue structures of the cervical region with the FACE.Significance.A conformal and highly flexible cervical array with high-impedance coil elements can potentially enable higher-resolution imaging for cervical imaging.


Subject(s)
Magnetic Resonance Imaging , Neck , Humans , Magnetic Resonance Imaging/methods , Neck/diagnostic imaging , Signal-To-Noise Ratio , Cervical Vertebrae/diagnostic imaging , Phantoms, Imaging , Equipment Design
4.
Sensors (Basel) ; 23(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37688046

ABSTRACT

Flexible and stretchable radiofrequency coils for magnetic resonance imaging represent an emerging and rapidly growing field. The main advantage of such coil designs is their conformal nature, enabling a closer anatomical fit, patient comfort, and freedom of movement. Previously, we demonstrated a proof-of-concept single element stretchable coil design with a self-tuning smart geometry. In this work, we evaluate the feasibility of scaling this coil concept to a multi-element coil array and the associated engineering and manufacturing challenges. To this goal, we study a dual-channel coil array using full-wave simulations, bench testing, in vitro, and in vivo imaging in a 3 T scanner. We use three fabrication techniques to manufacture dual-channel receive coil arrays: (1) single-layer casting, (2) double-layer casting, and (3) direct-ink-writing. All fabricated arrays perform equally well on the bench and produce similar sensitivity maps. The direct-ink-writing method is found to be the most advantageous fabrication technique for fabrication speed, accuracy, repeatability, and total coil array thickness (0.6 mm). Bench tests show excellent frequency stability of 128 ± 0.6 MHz (0% to 30% stretch). Compared to a commercial knee coil array, the stretchable coil array is more conformal to anatomy and provides 50% improved signal-to-noise ratio in the region of interest.


Subject(s)
Commerce , Engineering , Humans , Knee Joint , Metals , Movement
5.
Phys Med Biol ; 68(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37192635

ABSTRACT

Objective.A novel magnetic resonance imaging (MRI) radio-frequency (RF) coil design, termed an integrated RF/wireless (iRFW) coil design, can simultaneously perform MRI signal reception and far-field wireless data transfer with the same coil conductors between the coil in the scanner bore and an access point (AP) on the scanner room wall. The objective of this work is to optimize the design inside the scanner bore to provide a link budget between the coil and the AP for the wireless transmission of MRI data.Approach.Electromagnetic simulations were performed at the Larmor frequency of a 3T scanner and in a WiFi wireless communication band to optimize the radius and position of an iRFW coil located near the head of a human model inside the scanner bore, which were validated by performing both imaging and wireless experiments.Main Results.The simulated iRFW coil with a 40 mm radius positioned near the model forehead provided: a signal-to-noise ratio (SNR) comparable to that of a traditional RF coil with the same radius and position, a power absorbed by the human model within regulatory limits, and a gain pattern in the scanner bore resulting in a link budget of 51.1 dB between the coil and an AP located behind the scanner 3 m from the isocenter, which would be sufficient to wirelessly transfer MRI data acquired with a 16-channel coil array. The SNR, gain pattern, and link budget for initial simulations were validated by experimental measurements in an MRI scanner and anechoic chamber to provide confidence in this methodology. These results show that the iRFW coil design must be optimized within the scanner bore for the wireless transfer of MRI data.Significance.The MRI RF coil array coaxial cable assembly connected to the scanner increases patient setup time, can present a serious burn risk to patients and is an obstacle to the development of the next generation of lightweight, flexible or wearable coil arrays that provide an improved coil sensitivity for imaging. Significantly, the RF coaxial cables and corresponding receive chain electronics can be removed from within the scanner by integrating the iRFW coil design into an array for the wireless transmission of MRI data outside of the bore.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Humans , Phantoms, Imaging , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Equipment Design
6.
Med Phys ; 50(6): 3498-3510, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36737839

ABSTRACT

BACKGROUND: The development of materials with tailored signal intensity in MR imaging is critically important both for the reduction of signal from non-tissue hardware, as well as for the construction of tissue-mimicking phantoms. Silicone-based phantoms are becoming more popular due to their structural stability, stretchability, longer shelf life, and ease of handling, as well as for their application in dynamic imaging of physiology in motion. Moreover, silicone can be also used for the design of stretchable receive radio-frequency (RF) coils. PURPOSE: Fabrication of materials with tailored signal intensity for MRI requires knowledge of precise T1 and T2 relaxation times of the materials used. In order to increase the range of possible relaxation times, silicone materials can be doped with gadolinium (Gd). In this work, we aim to systematically evaluate relaxation properties of Gd-doped silicone material at a broad range of Gd concentrations and at three clinically relevant magnetic field strengths (1.5 T, 3 T, and 7 T). We apply the findings for rendering silicone substrates of stretchable receive RF coils less visible in MRI. Moreover, we demonstrate early stage proof-of-concept applicability in tissue-mimicking phantom development. MATERIALS AND METHODS: Ten samples of pure and Gd-doped Ecoflex silicone polymer samples were prepared with various Gd volume ratios ranging from 1:5000 to 1:10, and studied using 1.5 T and 3 T clinical and 7 T preclinical scanners. T1 and T2 relaxation times of each sample were derived by fitting the data to Bloch signal intensity equations. A receive coil made from Gd-doped Ecoflex silicone polymer was fabricated and evaluated in vitro at 3 T. RESULTS: With the addition of a Gd-based contrast agent, it is possible to significantly change T2 relaxation times of Ecoflex silicone polymer (from 213 ms to 20 ms at 1.5 T; from 135 ms to 17 ms at 3 T; and from 111.4 ms to 17.2 ms at 7 T). T1 relaxation time is less affected by the introduction of the contrast agent (changes from 608 ms to 579 ms; from 802.5 ms to 713 ms at 3 T; from 1276 ms to 979 ms at 7 T). First results also indicate that liver, pancreas, and white matter tissues can potentially be closely mimicked using this phantom preparation technique. Gd-doping reduces the appearance of the silicone-based coil substrate during the MR scan by up to 81%. CONCLUSIONS: Gd-based contrast agents can be effectively used to create Ecoflex silicone polymer-based phantoms with tailored T2 relaxation properties. The relative low cost, ease of preparation, stretchability, mechanical stability, and long shelf life of Ecoflex silicone polymer all make it a good candidate for "MR invisible" coil development and bears promise for tissue-mimicking phantom development applicability.


Subject(s)
Contrast Media , Silicones , Magnetic Resonance Imaging/methods , Liver , Phantoms, Imaging
7.
Magn Reson Med ; 89(6): 2471-2484, 2023 06.
Article in English | MEDLINE | ID: mdl-36695296

ABSTRACT

PURPOSE: Coil arrays are connected to the main MRI system with long, shielded coaxial cables. RF coupling of these cables to the main transmit coil can cause high shield currents, which pose risks of heating and RF burns. High-blocking resonant RF traps are placed at distinct positions along cables to mitigate these currents. Traditional traps are designed to be stiff to avoid changes in their resonant frequency, hindering the overall system flexibility. Instead of using a few high-blocking traps, we propose the use of caterpillar traps-a distributed system of small, elastic traps that cover the full length of cables. METHODS: We leverage an array of resonant toroids as traps, forming a caterpillar-like structure whereby bending only impacts individual traps minimally. Benchtop measurements are used to determine the blocking of caterpillar traps and show their robustness to bending. We also compare an anterior array system cable covered with caterpillar traps to a commercial cable with B1 + and heating measurements. RESULTS: Benchtop experiments with caterpillar traps demonstrate high robustness to bending. B1 + mapping experiments of an anterior array cable show improved blocking and flexibility compared to a commercial cable. CONCLUSION: Caterpillar traps provide sufficient attenuation to shield currents while allowing cable flexibility. Our distributed design can provide high blocking efficiency at different positions and orientations, even in cases where commercial cable traps cannot.


Subject(s)
Magnetic Resonance Imaging , Equipment Design , Phantoms, Imaging
8.
J Clin Med ; 11(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36294304

ABSTRACT

PURPOSE: To evaluate the performance of a new, highly flexible radiofrequency (RF) coil system for imaging patients undergoing MR simulation. METHODS: Volumetric phantom and in vivo images were acquired with a commercially available and prototype RF coil set. Phantom evaluation was performed using a silicone-filled humanoid phantom of the head and shoulders. In vivo assessment was performed in five healthy and six patient subjects. Phantom data included T1-weighted volumetric imaging, while in vivo acquisitions included both T1- and T2-weighted volumetric imaging. Signal to noise ratio (SNR) and uniformity metrics were calculated in the phantom data, while SNR values were calculated in vivo. Statistical significance was tested by means of a non-parametric analysis of variance test. RESULTS: At a threshold of p = 0.05, differences in measured SNR distributions within the entire phantom volume were statistically different in two of the three paired coil set comparisons. Differences in per slice average SNR between the two coil sets were all statistically significant, as well as differences in per slice image uniformity. For patients, SNRs within the entire imaging volume were statistically significantly different in four of the nine comparisons and seven of the nine comparisons performed on the per slice average SNR values. For healthy subjects, SNRs within the entire imaging volume were statistically significantly different in seven of the nine comparisons and eight of the nine comparisons when per slice average SNR was tested. CONCLUSIONS: Phantom and in vivo results demonstrate that image quality obtained from the novel flexible RF coil set was similar or improved over the conventional coil system. The results also demonstrate that image quality is impacted by the specific coil configurations used for imaging and should be matched appropriately to the anatomic site imaged to ensure optimal and reproducible image quality.

9.
IEEE Trans Med Imaging ; 41(12): 3762-3773, 2022 12.
Article in English | MEDLINE | ID: mdl-35914030

ABSTRACT

To enable wireless MRI receive arrays, per-channel power consumption must be reduced by a significant factor. To address this, a low-power SiGe alternative to industry standard MRI pre-amplifier blocks has been proposed and its impact on imaging performance evaluated in a benchtop environment. The SiGe amplifier reduces power consumption 28x, but exhibits increased non-linearity and reduced dynamic range relative to industry standard amplifiers. This distorts the images, causing reduced contrast and a blurring of fine features. In conjunction with the amplifier, a semi-blind calibration and compensation framework has been proposed to remove artifacts caused by this non-linearity. Requiring the knowledge of the calibration signal bandwidth, the associated peak transmit powers, and the distorted baseband signals, a second non-linearity is constructed that when cascaded with the receive chain produces a linear response. This method was evaluated for both knee and phantom image datasets of peak input power -20dBm with a -40dBm peak input power image as reference. In the benchtop environment, industry standard amplifiers produced input normalized RMSEs of 0.0199 and 0.0310 for phantom and knee datasets, respectively. The low-power SiGe amplifier resulted in RMSEs of 0.0869 and 0.1130 which were reduced to 0.0158 and 0.0168 following compensation, for phantom and knee images respectively. The ability to effectively compensate for this reduced dynamic range encourages further investigation of low-power SiGe amplifiers for power limited MRI receive arrays.


Subject(s)
Amplifiers, Electronic , Magnetic Resonance Imaging , Calibration , Equipment Design , Phantoms, Imaging
10.
NMR Biomed ; 35(12): e4802, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35834176

ABSTRACT

Lack of a body-sized, bore-mounted, radiofrequency (RF) body coil for ultrahigh field (UHF) magnetic resonance imaging (MRI) is one of the major drawbacks of UHF, hampering the clinical potential of the technology. Transmit field (B1 ) nonuniformity and low specific absorption rate (SAR) efficiencies in UHF MRI are two challenges to be overcome. To address these problems, and ultimately provide a pathway for the full clinical potential of the modality, we have designed and simulated two-dimensional cylindrical high-pass ladder (2D c-HPL) architectures for clinical bore-size dimensions, and demonstrated a simplified proof of concept with a head-sized prototype at 7 T. A new dispersion relation has been derived and electromagnetic simulations were used to verify coil modes. The coefficient of variation (CV) for brain, cerebellum, heart, and prostate tissues after B1 + shimming in silico is reported and compared with previous works. Three prototypes were designed in simulation: a head-sized, body-sized, and long body-sized coil. The head-sized coil showed a CV of 12.3%, a B1 + efficiency of 1.33 µT/√W, and a SAR efficiency of 2.14 µT/√(W/kg) for brain simulations. The body-sized 2D c-HPL coil was compared with same-sized transverse electromagnetic (TEM) and birdcage coils in silico with a four-port circularly polarized mode excitation. Improved B1 + uniformity (26.9%) and SAR efficiency (16% and 50% better than birdcage and TEM coils, respectively) in spherical phantoms was observed. We achieved a CV of 12.3%, 4.9%, 16.7%, and 2.8% for the brain, cerebellum, heart, and prostate, respectively. Preliminary imaging results for the head-sized coil show good agreement between simulation and experiment. Extending the 1D birdcage coil concept to 2D c-HPLs provides improved B1 + uniformity and SAR efficiency.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Male , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Head , Brain/diagnostic imaging
11.
IEEE Access ; 10: 25062-25072, 2022.
Article in English | MEDLINE | ID: mdl-35600672

ABSTRACT

Magnetic resonance guided focused ultrasound (MRgFUS) is a non-invasive therapeutic modality for neurodegenerative diseases that employs real-time imaging and thermometry monitoring of targeted regions. MRI is used in guidance of ultrasound treatment; however, the MR image quality in current clinical applications is poor when using the vendor built-in body coil. We present an 8-channel, ultra-thin, flexible, and acoustically transparent receive-only head coil design (FUS-Flex) to improve the signal-to-noise ratio (SNR) and thus the quality of MR images during MRgFUS procedures. Acoustic simulations/experiments exhibit transparency of the FUS-Flex coil as high as 97% at 650 kHz. Electromagnetic simulations show a SNR increase of 13× over the body coil. In vivo results show an increase of the SNR over the body coil by a factor of 7.3 with 2× acceleration (equivalent to 11× without acceleration) in the brain of a healthy volunteer, which agrees well with simulation. These preliminary results show that the use of a FUS-Flex coil in MRgFUS surgery can increase MR image quality, which could yield improved focal precision, real-time intraprocedural anatomical imaging, and real-time 3D thermometry mapping.

12.
Magn Reson Med ; 88(2): 1002-1014, 2022 08.
Article in English | MEDLINE | ID: mdl-35468243

ABSTRACT

PURPOSE: To develop a wireless integrated parallel reception, excitation, and shimming (iPRES-W) coil array for simultaneous imaging and wireless localized B0 shimming, and to demonstrate its ability to correct for distortions in DTI of the spinal cord in vivo. METHODS: A 4-channel coil array was modified to allow an RF current at the Larmor frequency and a direct current to flow on each coil element, enabling imaging and localized B0 shimming, respectively. One coil element was further modified to allow additional RF currents within a wireless communication band to flow on it to wirelessly control the direct currents for shimming, which were supplied from a battery pack within the scanner bore. The RF signals for imaging were transferred via conventional wired connections. Experiments were conducted to evaluate the RF, B0 shimming, and wireless performance of this coil design. RESULTS: The coil modifications did not degrade the SNR. Wireless localized B0 shimming with the iPRES-W coil array substantially reduced the B0 RMSE (-57.5% on average) and DTI distortions in the spinal cord. The antenna radiation efficiency, antenna gain pattern, and battery power consumption of an iPRES-W coil measured in an anechoic chamber were minimally impacted by the introduction of a saline phantom representing tissue. CONCLUSION: The iPRES-W coil array can perform imaging and wireless localized B0 shimming of the spinal cord with no SNR degradation, with minimal change in wireless performance and without any scanner modifications or additional antenna systems within the scanner bore.


Subject(s)
Cervical Cord , Magnetic Resonance Imaging , Brain , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Spinal Cord/diagnostic imaging
14.
Nat Commun ; 13(1): 466, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075123

ABSTRACT

Hyperpolarised magnetic resonance imaging (HP 13C-MRI) is an emerging clinical technique to detect [1-13C]lactate production in prostate cancer (PCa) following intravenous injection of hyperpolarised [1-13C]pyruvate. Here we differentiate clinically significant PCa from indolent disease in a low/intermediate-risk population by correlating [1-13C]lactate labelling on MRI with the percentage of Gleason pattern 4 (%GP4) disease. Using immunohistochemistry and spatial transcriptomics, we show that HP 13C-MRI predominantly measures metabolism in the epithelial compartment of the tumour, rather than the stroma. MRI-derived tumour [1-13C]lactate labelling correlated with epithelial mRNA expression of the enzyme lactate dehydrogenase (LDHA and LDHB combined), and the ratio of lactate transporter expression between the epithelial and stromal compartments (epithelium-to-stroma MCT4). We observe similar changes in MCT4, LDHA, and LDHB between tumours with primary Gleason patterns 3 and 4 in an independent TCGA cohort. Therefore, HP 13C-MRI can metabolically phenotype clinically significant disease based on underlying metabolic differences in the epithelial and stromal tumour compartments.


Subject(s)
Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Aged , Aged, 80 and over , Cohort Studies , Epithelial Cells/metabolism , Glycolysis , Humans , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Magnetic Resonance Imaging , Male , Middle Aged , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Prospective Studies , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Pyruvic Acid/metabolism , Stromal Cells/metabolism
15.
IEEE Access ; 9: 140824-140834, 2021.
Article in English | MEDLINE | ID: mdl-34722096

ABSTRACT

The purpose of this study is to investigate feasibility of estimating the specific absorption rate (SAR) in MRI in real time. To this goal, SAR maps are predicted from 3T- and 7T-simulated magnetic resonance (MR) images in 10 realistic human body models via a convolutional neural network. Two-dimensional (2-D) U-Net architectures with varying contraction layers and different convolutional filters were designed to estimate the SAR distribution in realistic body models. Sim4Life (ZMT, Switzerland) was used to create simulated anatomical images and SAR maps at 3T and 7T imaging frequencies for Duke, Ella, Charlie, and Pregnant Women (at 3, 7, and 9 month gestational stages) body models. Mean squared error (MSE) was used as the cost function and the structural similarity index (SSIM) was reported. A 2-D U-Net with 4 contracting (and 4 expanding) layers and 64 convolutional filters at the initial stage showed the best compromise to estimate SAR distributions. Adam optimizer outperformed stochastic gradient descent (SGD) for all cases with an average SSIM of 90.5∓3.6 % and an average MSE of 0.7∓0.6% for head images at 7T, and an SSIM of >85.1∓6.2 % and an MSE of 0.4∓0.4% for 3T body imaging. Algorithms estimated the SAR maps for 224×224 slices under 30 ms. The proposed methodology shows promise to predict real-time SAR in clinical imaging settings without using extra mapping techniques or patient-specific calibrations.

16.
Sci Rep ; 11(1): 16228, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376703

ABSTRACT

Magnetic resonance imaging systems rely on signal detection via radiofrequency coil arrays which, ideally, need to provide both bendability and form-fitting stretchability to conform to the imaging volume. However, most commercial coils are rigid and of fixed size with a substantial mean offset distance of the coil from the anatomy, which compromises the spatial resolution and diagnostic image quality as well as patient comfort. Here, we propose a soft and stretchable receive coil concept based on liquid metal and ultra-stretchable polymer that conforms closely to a desired anatomy. Moreover, its smart geometry provides a self-tuning mechanism to maintain a stable resonance frequency over a wide range of elongation levels. Theoretical analysis and numerical simulations were experimentally confirmed and demonstrated that the proposed coil withstood the unwanted frequency detuning typically observed with other stretchable coils (0.4% for the proposed coil as compared to 4% for a comparable control coil). Moreover, the signal-to-noise ratio of the proposed coil increased by more than 60% as compared to a typical, rigid, commercial coil.


Subject(s)
Knee/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Signal-To-Noise Ratio , Humans
17.
Magn Reson Med ; 86(6): 3373-3381, 2021 12.
Article in English | MEDLINE | ID: mdl-34268802

ABSTRACT

PURPOSE: This study describes the development and testing of an asymmetrical xenon-129 (129 Xe) birdcage radiofrequency (RF) coil for 129 Xe lung ventilation imaging at 1.5 Tesla, which allows proton (1 H) system body coil transmit-receive functionality. METHODS: The 129 Xe RF coil is a whole-body asymmetrical elliptical birdcage constructed without an outer RF shield to enable 1 H imaging. B1+ field homogeneity and flip angle mapping of the 129 Xe birdcage RF coil and 1 H system body RF coil with the 129 Xe RF coil in situ were evaluated in the MR scanner. The functionality of the 129 Xe birdcage RF coil was demonstrated through hyperpolarized 129 Xe lung ventilation imaging with the birdcage in both transceiver configuration and transmit-only configuration when combined with an 8-channel 129 Xe receive-only RF coil array. The functionality of 1 H system body coil with the 129 Xe RF coil in situ was demonstrated by acquiring coregistered 1 H lung anatomical MR images. RESULTS: The asymmetrical birdcage produced a homogeneous B1+ field (±10%) in agreement with electromagnetic simulations. Simulations indicated an optimal detuning configuration with 4 diodes. The obtained g-factor of 1.4 for acceleration factor of R = 2 indicates optimal array configuration. Coregistered 1 H anatomical images from the system body coil along with 129 Xe lung images demonstrated concurrent and compatible arrangement of the RF coils. CONCLUSION: A large asymmetrical birdcage for homogenous B1+ transmission with high sensitivity reception for 129 Xe lung MRI at 1.5 Tesla has been demonstrated. The unshielded asymmetrical birdcage design enables 1 H structural lung MR imaging in the same exam.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Equipment Design , Lung/diagnostic imaging , Phantoms, Imaging , Protons , Thorax
18.
Magn Reson Med ; 85(3): 1561-1570, 2021 03.
Article in English | MEDLINE | ID: mdl-32926448

ABSTRACT

PURPOSE: To measure the transverse relaxation time ( T 2 ∗ ) and apparent diffusion coefficient (ADC) of 19 F-C3 F8 gas in vivo in human lungs at 1.5T and 3T, and to determine the representative distribution of values of these parameters in a cohort of healthy volunteers. METHODS: Mapping of ADC at lung inflation levels of functional residual capacity (FRC) and total lung capacity (TLC) was performed with inhaled 19 F-C3 F8 (eight subjects) and 129 Xe (six subjects) at 1.5T. T 2 ∗ mapping with 19 F-C3 F8 was performed at 1.5T (at FRC and TLC) for 8 subjects and at 3T (at TLC for seven subjects). RESULTS: At both FRC and TLC, the 19 F-C3 F8 ADC was smaller than the free diffusion coefficient demonstrating airway microstructural diffusion restriction. From FRC to TLC, the mean ADC significantly increased from 1.56 mm2 /s to 1.83 mm2 /s (P = .0017) for 19 F-C3 F8, and from 2.49 mm2 /s to 3.38 mm2 /s (P = .0015) for 129 Xe. The posterior-to-anterior gradient in ADC for FRC versus TLC in the superior half of the lungs was measured as 0.0308 mm2 /s per cm versus 0.0168 mm2 /s per cm for 19 F-C3 F8 and 0.0871 mm2 /s per cm versus 0.0326 mm2 /s per cm for 129 Xe. A consistent distribution of 19 F-C3 F8 T 2 ∗ values was observed in the lungs, with low values observed near the diaphragm and large pulmonary vessels. The mean T 2 ∗ across volunteers was 4.48 ms at FRC and 5.33 ms at TLC for 1.5T, and 3.78 ms at TLC for 3T. CONCLUSION: In this feasibility study, values of physiologically relevant parameters of lung microstructure measurable by MRI ( T 2 ∗ , and ADC) were established for C3 F8 in vivo lung imaging in healthy volunteers.


Subject(s)
Lung , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging , Healthy Volunteers , Humans , Lung/diagnostic imaging , Respiratory Function Tests
19.
AJR Am J Roentgenol ; 216(2): 552-559, 2021 02.
Article in English | MEDLINE | ID: mdl-33236945

ABSTRACT

OBJECTIVE. The Adaptive Image Receive (AIR) radiofrequency coil is an emergent technology that is lightweight and flexible and exhibits electrical characteristics that overcome many of the limitations of traditional rigid coil designs. The purpose of this study was to apply the AIR coil for whole-brain imaging and compare the performance of a prototype AIR coil array with the performance of conventional head coils. SUBJECTS AND METHODS. A phantom and 15 healthy adult participants were imaged. A prototype 16-channel head AIR coil was compared with conventional 8-and 32-channel head coils using clinically available MRI sequences. During consensus review, two board-certified neuroradiologists graded the AIR coil compared with an 8-channel coil and a 32-channel coil on a 5-point ordinal scale in multiple categories. One- and two-sided Wilcoxon signed rank tests were performed. Noise covariance matrices and geometry factor (g-factor) maps were calculated. RESULTS. The signal-to-noise ratio, structural sharpness, and overall image quality scores of the prototype 16-channel AIR coil were better than those of the 8-channel coil but were not as good as those of the 32-channel coil. Noise covariance matrices showed stable performance of the AIR coil across participants. The median g-factors for the 16-channel AIR coil were, overall, less than those of the 8-channel coil but were greater than those of the 32-channel coil. CONCLUSION. On average, the prototype 16-channel head AIR coil outperformed a conventional 8-channel head coil but did not perform as well as a conventional 32-channel head coil. This study shows the feasibility of the novel AIR coil technology for imaging the brain and provides insight for future coil design improvements.


Subject(s)
Artifacts , Brain/diagnostic imaging , Magnetic Resonance Imaging , Neuroimaging , Adult , Feasibility Studies , Female , Humans , Male , Middle Aged , Phantoms, Imaging , Signal-To-Noise Ratio , Young Adult
20.
Magn Reson Med ; 84(4): 2262-2277, 2020 10.
Article in English | MEDLINE | ID: mdl-32281139

ABSTRACT

PURPOSE: To firstly improve the attainable image SNR of 19 F and 1 H C3 F8 lung imaging at 1.5 tesla using an 8-element transmit/receive (Tx/Rx) flexible vest array combined with a 6-element Rx-only array, and to secondly evaluate microelectromechanical systems for switching the array elements between the 2 resonant frequencies. METHODS: The Tx efficiency and homogeneity of the 8-element array were measured and simulated for 1 H imaging in a cylindrical phantom and then evaluated for in vivo 19 F/1 H imaging. The added improvement provided by the 6-element Rx-only array was quantified through simulation and measurement and compared to the ultimate SNR. It was verified through the measurement of isolation that microelectromechanical systems switches provided broadband isolation of Tx/Rx circuitry such that the 19 F tuned Tx/Rx array could be effectively used for both 19 F and 1 H nuclei. RESULTS: For 1 H imaging, the measured Tx efficiency/homogeneity (mean ± percent SD; 6.79µT/kW±26% ) was comparable to that simulated ( 7.57µT/kW±20% ). The 6 additional Rx-only loops increased the mean Rx sensitivity when compared to the 8-element array by a factor of 1.41× and 1.45× in simulation and measurement, respectively. In regions central to the thorax, the simulated SNR of the 14-element array achieves ≥70% of the ultimate SNR when including noise from the matching circuits and preamplifiers. A measured microelectromechanical systems switching speed of 12 µs and added minimum 22 dB of isolation between Tx and Rx were sufficient for Tx/Rx switching in this application. CONCLUSION: The described single-tuned array driven at 19 F and 1 H, utilizing microelectromechanical systems technology, provides excellent results for 19 F and 1 H dual-nuclear lung ventilation imaging.


Subject(s)
Micro-Electrical-Mechanical Systems , Equipment Design , Lung/diagnostic imaging , Magnetic Resonance Imaging , Phantoms, Imaging , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...