Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-471814

ABSTRACT

Presented here is a magnetic hydrogel particle enabled workflow for capturing and concentrating SARS-CoV-2 from diagnostic remnant swab samples that significantly improves sequencing results using the Oxford Nanopore Technologies MinION sequencing platform. Our approach utilizes a novel affinity-based magnetic hydrogel particle, circumventing low input sample volumes and allowing for both rapid manual and automated high throughput workflows that are compatible with nanopore sequencing. This approach enhances standard RNA extraction protocols, providing up to 40x improvements in viral mapped reads, and improves sequencing coverage by 20-80% from lower titer diagnostic remnant samples. Furthermore, we demonstrate that this approach works for contrived influenza virus and respiratory syncytial virus samples, suggesting that it can be used to identify and improve sequencing results of multiple viruses in VTM samples. These methods can be performed manually or on a KingFisher Apex system.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-172510

ABSTRACT

Here we present a rapid and versatile method for capturing and concentrating SARS-CoV-2 from transport medium and saliva using affinity-capture magnetic hydrogel particles. We demonstrate that the method concentrates virus prior to RNA extraction, thus significantly improving detection of the virus using a real-time RT-PCR assay across a range of viral titers, from 100 to 1,000,000 viral copies/mL; in particular, detection of virus in low viral load samples is enhanced when using the method coupled with the IDT 2019-nCoV CDC EUA Kit. This method is compatible with commercially available nucleic acid extraction kits, as well with a simple heat and detergent method. Using transport medium diagnostic remnant samples that previously had been tested for SARS-CoV-2 using either the Abbott RealTime SARS-CoV-2 EUA Test (n=14) or the Cepheid Xpert Xpress SARS-CoV-2 EUA Test (n=35), we demonstrate that our method not only correctly identifies all positive samples (n = 17) but also significantly improves detection of the virus in low viral load samples. The average improvement in cycle threshold (Ct) value as measured with the IDT 2019-nCoV CDC EUA Kit was 3.1; n = 10. Finally, to demonstrate that the method could potentially be used to enable pooled testing, we spiked infectious virus or a confirmed positive diagnostic remnant sample into 5 mL and 10 mL of negative transport medium and observed significant improvement in the detection of the virus from those larger sample volumes.

SELECTION OF CITATIONS
SEARCH DETAIL
...