Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0303741, 2024.
Article in English | MEDLINE | ID: mdl-38809930

ABSTRACT

Studying sound production at different developmental stages can provide insight into the processes involved in vocal ontogeny. Humpback whales (Megaptera novaeangliae) are a known vocal learning species, but their vocal development is poorly understood. While studies of humpback whale calves in the early stages of their lives on the breeding grounds and migration routes exist, little is known about the behavior of these immature, dependent animals by the time they reach the feeding grounds. In this study, we used data from groups of North Atlantic humpback whales in the Gulf of Maine in which all members were simultaneously carrying acoustic recording tags attached with suction cups. This allowed for assignment of likely caller identity using the relative received levels of calls across tags. We analyzed data from 3 calves and 13 adults. There were high levels of call rate variation among these individuals and the results represent preliminary descriptions of calf behavior. Our analysis suggests that, in contrast to the breeding grounds or on migration, calves are no longer acoustically cryptic by the time they reach their feeding ground. Calves and adults both produce calls in bouts, but there may be some differences in bout parameters like inter-call intervals and bout durations. Calves were able to produce most of the adult vocal repertoire but used different call types in different proportions. Finally, we found evidence of immature call types in calves, akin to protosyllables used in babbling in other mammals, including humans. Overall, the sound production of humpback whale calves on the feeding grounds appears to be already similar to that of adults, but with differences in line with ontogenetic changes observed in other vocal learning species.


Subject(s)
Humpback Whale , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Humpback Whale/physiology , Feeding Behavior/physiology , Acoustics , Female , Male
2.
R Soc Open Sci ; 11(3): 231608, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481982

ABSTRACT

Acoustic recording tags provide fine-scale data linking acoustic signalling with individual behaviour; however, when an animal is in a group, it is challenging to tease apart calls of conspecifics and identify which individuals produce each call. This, in turn, prohibits a robust assessment of individual acoustic behaviour including call rates and silent periods, call bout production within and between individuals, and caller location. To overcome this challenge, we simultaneously instrumented small groups of humpback whales on a western North Atlantic feeding ground with sound and movement recording tags. This approach enabled a comparison of the relative amplitude of each call across individuals to infer caller identity for 97% of calls. We recorded variable call rates across individuals (mean = 23 calls/h) and groups (mean = 55 calls/h). Calls were produced throughout dives, and most calls were produced in bouts with short inter-call intervals of 2.2 s. Most calls received a likely response from a conspecific within 100 s. This caller identification (ID) method facilitates studying both individual- and group-level acoustic behaviour, yielding novel results about the nature of sequence production and vocal exchanges in humpback whale social calls. Future studies can expand on these caller ID methods for understanding intra-group communication across taxa.

3.
PLoS One ; 18(9): e0290643, 2023.
Article in English | MEDLINE | ID: mdl-37729181

ABSTRACT

Climate change and climate variability are affecting marine mammal species and these impacts are projected to continue in the coming decades. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species using currently available information. We conducted a trait-based climate vulnerability assessment using expert elicitation for 108 marine mammal stocks and stock groups in the western North Atlantic, Gulf of Mexico, and Caribbean Sea. Our approach combined the exposure (projected change in environmental conditions) and sensitivity (ability to tolerate and adapt to changing conditions) of marine mammal stocks to estimate vulnerability to climate change, and categorize stocks with a vulnerability index. The climate vulnerability score was very high for 44% (n = 47) of these stocks, high for 29% (n = 31), moderate for 20% (n = 22), and low for 7% (n = 8). The majority of stocks (n = 78; 72%) scored very high exposure, whereas 24% (n = 26) scored high, and 4% (n = 4) scored moderate. The sensitivity score was very high for 33% (n = 36) of these stocks, high for 18% (n = 19), moderate for 34% (n = 37), and low for 15% (n = 16). Vulnerability results were summarized for stocks in five taxonomic groups: pinnipeds (n = 4; 25% high, 75% moderate), mysticetes (n = 7; 29% very high, 57% high, 14% moderate), ziphiids (n = 8; 13% very high, 50% high, 38% moderate), delphinids (n = 84; 52% very high, 23% high, 15% moderate, 10% low), and other odontocetes (n = 5; 60% high, 40% moderate). Factors including temperature, ocean pH, and dissolved oxygen were the primary drivers of high climate exposure, with effects mediated through prey and habitat parameters. We quantified sources of uncertainty by bootstrapping vulnerability scores, conducting leave-one-out analyses of individual attributes and individual scorers, and through scoring data quality for each attribute. These results provide information for researchers, managers, and the public on marine mammal responses to climate change to enhance the development of more effective marine mammal management, restoration, and conservation activities that address current and future environmental variation and biological responses due to climate change.


Subject(s)
Caniformia , Climate Change , Animals , Gulf of Mexico , Caribbean Region , Mammals , Cetacea
4.
PeerJ ; 11: e16028, 2023.
Article in English | MEDLINE | ID: mdl-37744223

ABSTRACT

Heteroplasmy is the presence of two or more organellar genomes (mitochondrial or plastid DNA) in an organism, tissue, cell or organelle. Heteroplasmy can be detected by visual inspection of Sanger sequencing chromatograms, where it appears as multiple peaks of fluorescence at a single nucleotide position. Visual inspection of chromatograms is both consuming and highly subjective, as heteroplasmy is difficult to differentiate from background noise. Few software solutions are available to automate the detection of point heteroplasmies, and those that are available are typically proprietary, lack customization or are unsuitable for automated heteroplasmy assessment in large datasets. Here, we present PHFinder, a Python-based, open-source tool to assist in the detection of point heteroplasmies in large numbers of Sanger chromatograms. PHFinder automatically identifies point heteroplasmies directly from the chromatogram trace data. The program was tested with Sanger sequencing data from 100 humpback whales (Megaptera novaeangliae) tissue samples with known heteroplasmies. PHFinder detected most (90%) of the known heteroplasmies thereby greatly reducing the amount of visual inspection required. PHFinder is flexible and enables explicit specification of key parameters to infer double peaks (i.e., heteroplasmies).


Subject(s)
Heteroplasmy , Humpback Whale , Animals , Fluorescence , Mitochondria , Nucleotides
5.
Science ; 381(6661): 990-995, 2023 09.
Article in English | MEDLINE | ID: mdl-37651509

ABSTRACT

Phylogeny-based estimates suggesting a low germline mutation rate (µ) in baleen whales have influenced research ranging from assessments of whaling impacts to evolutionary cancer biology. We estimated µ directly from pedigrees in four baleen whale species for both the mitochondrial control region and nuclear genome. The results suggest values higher than those obtained through phylogeny-based estimates and similar to pedigree-based values for primates and toothed whales. Applying our estimate of µ reduces previous genetic-based estimates of preexploitation whale abundance by 86% and suggests that µ cannot explain low cancer rates in gigantic mammals. Our study shows that it is feasible to estimate µ directly from pedigrees in natural populations, with wide-ranging implications for ecological and evolutionary research.


Subject(s)
Mutation Rate , Whales , Animals , Pedigree , Whales/genetics
6.
Environ Pollut ; 316(Pt 1): 120616, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36410597

ABSTRACT

Contaminant studies in cetaceans can provide information about pollutant levels and patterns in a given region. Due to the confounding effects of reproductive status and maternal offloading in females, these studies typically focus on males. However, an improved understanding of contaminant burdens in female cetaceans is needed to better assess potential impacts to populations. The objectives of this study were to characterize concentrations of persistent organic pollutants (POPs) in blubber of female humpback whales across age classes and to also better characterize maternal offloading of these pollutants to their offspring. A total of 36 blubber biopsy samples of female humpback whales (Megaptera novaeangliae) from the Gulf of Maine were analyzed to examine contaminant loads across females of different ages. Sampled individuals were individually-identified from longitudinal studies and assigned to age class (i.e., adult, subadult, juvenile, calf). Analysis was performed using gas chromatography/mass spectrometry (GC/MS) of POPs including polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs), chlordanes (CHLDs), polybrominated diphenyl ethers (PBDEs), hexachlorocyclohexanes (HCHs). The most abundant POPs were PCB congeners, with summed values ranging from 280 to 12,000 ng/g, lipid weight, which is above recent estimates of the threshold for adverse health effects. We found significant differences in mean values between adults and juveniles and between adults and subadults, with the exception of the less persistent HCHs for the latter. We also found significant differences in mean levels of ∑HCHs between the juveniles and subadults. Changes over age are consistent with maternal offloading and potentially important for evaluating population health and viability.


Subject(s)
Environmental Pollutants , Humpback Whale , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Male , Female , Persistent Organic Pollutants , Maine , Water Pollutants, Chemical/analysis , Polychlorinated Biphenyls/analysis , Halogenated Diphenyl Ethers/analysis , Environmental Pollutants/analysis , Hexachlorocyclohexane/analysis , Environmental Monitoring
7.
Glob Chang Biol ; 28(8): 2657-2677, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35106859

ABSTRACT

Global warming is affecting the population dynamics and trophic interactions across a wide range of ecosystems and habitats. Translating these real-time effects into their long-term consequences remains a challenge. The rapid and extreme warming period that occurred after the Last Glacial Maximum (LGM) during the Pleistocene-Holocene transition (7-12 thousand years ago) provides an opportunity to gain insights into the long-term responses of natural populations to periods with global warming. The effects of this post-LGM warming period have been assessed in many terrestrial taxa, whereas insights into the impacts of rapid global warming on marine taxa remain limited, especially for megafauna. In order to understand how large-scale climate fluctuations during the post-LGM affected baleen whales and their prey, we conducted an extensive, large-scale analysis of the long-term effects of the post-LGM warming on abundance and inter-ocean connectivity in eight baleen whale and seven prey (fish and invertebrates) species across the Southern and the North Atlantic Ocean; two ocean basins that differ in key oceanographic features. The analysis was based upon 7032 mitochondrial DNA sequences as well as genome-wide DNA sequence variation in 100 individuals. The estimated temporal changes in genetic diversity during the last 30,000 years indicated that most baleen whale populations underwent post-LGM expansions in both ocean basins. The increase in baleen whale abundance during the Holocene was associated with simultaneous changes in their prey and climate. Highly correlated, synchronized and exponential increases in abundance in both baleen whales and their prey in the Southern Ocean were indicative of a dramatic increase in ocean productivity. In contrast, the demographic fluctuations observed in baleen whales and their prey in the North Atlantic Ocean were subtle, varying across taxa and time. Perhaps most important was the observation that the ocean-wide expansions and decreases in abundance that were initiated by the post-LGM global warming, continued for millennia after global temperatures stabilized, reflecting persistent, long-lasting impacts of global warming on marine fauna.


Subject(s)
Ecosystem , Global Warming , Animals , Atlantic Ocean , Population Dynamics , Whales/physiology
8.
Conserv Physiol ; 9(1): coab059, 2021.
Article in English | MEDLINE | ID: mdl-34745632

ABSTRACT

Understanding calving rates of wild whale populations is critically important for management and conservation. Reproduction of humpback whales (Megaptera novaeangliae) is difficult to monitor and, even with long-term sighting studies, basic physiological information such as pregnancy rates and calving intervals remain poorly understood in many populations. We hypothesized that pregnant whales have sustained elevations in baleen progesterone that temporally correlate with gestation. To test this hypothesis, baleen progesterone profiles from two adult female North Pacific humpbacks, both with extensive sighting records and documented pregnancies, were compared to those of a nulliparous female (adult female never seen with a calf) and a juvenile male. Baleen specimens recovered during necropsy were subsampled every 2 cm from the base to the tip of the plate, with each interval representing 30-45 days of growth. Homogenized baleen powder was assayed for progesterone using enzyme immunoassays. The date of growth of each sampling location on the baleen plate was estimated based on stable isotope analysis of annual δ15N cycles. Progesterone profiles from both pregnant whales showed sustained high progesterone content (>350 ng/g) in areas corresponding to known pregnancies, inferred from calf sightings and post-mortem data. The younger female, estimated to be 13 years old, had higher progesterone during pregnancy than the 44.5 year old, but levels during non-pregnancy were similar. The nulliparous female and the male had low progesterone throughout their baleen plates. Baleen hormone analysis can determine how progesterone concentrations change throughout gestation and has potential for estimating age at first reproduction, pregnancy intervals, failed pregnancies and early calf mortality. Understanding rates of calving and current and historic reproductive patterns in humpbacks is vital to continuing conservation measures in this species.

9.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Article in English | MEDLINE | ID: mdl-33681975

ABSTRACT

Biofilm-forming bacteria have the potential to contribute to the health, physiology, behavior and ecology of the host and serve as its first line of defense against adverse conditions in the environment. While metabarcoding and metagenomic information furthers our understanding of microbiome composition, fewer studies use cultured samples to study the diverse interactions among the host and its microbiome, as cultured representatives are often lacking. This study examines the surface microbiomes cultured from three shallow-water coral species and two whale species. These unique marine animals place strong selective pressures on their microbial symbionts and contain members under similar environmental and anthropogenic stress. We developed an intense cultivation procedure, utilizing a suite of culture conditions targeting a rich assortment of biofilm-forming microorganisms. We identified 592 microbial isolates contained within 15 bacterial orders representing 50 bacterial genera, and two fungal species. Culturable bacteria from coral and whale samples paralleled taxonomic groups identified in culture-independent surveys, including 29% of all bacterial genera identified in the Megaptera novaeangliae skin microbiome through culture-independent methods. This microbial repository provides raw material and biological input for more nuanced studies which can explore how members of the microbiome both shape their micro-niche and impact host fitness.


Subject(s)
Anthozoa , Microbiota , Animals , Bacteria/genetics , Metagenome , Metagenomics
10.
Conserv Physiol ; 9(1): coab096, 2021.
Article in English | MEDLINE | ID: mdl-34987826

ABSTRACT

Baleen whales are subject to a myriad of natural and anthropogenic stressors, but understanding how these stressors affect physiology is difficult. Measurement of adrenal glucocorticoid (GC) hormones involved in the vertebrate stress response (cortisol and corticosterone) in baleen could help fill this data gap. Baleen analysis is a powerful tool, allowing for a retrospective re-creation of multiple years of GC hormone concentrations at approximately a monthly resolution. We hypothesized that whales that died from acute causes (e.g. ship strike) would have lower levels of baleen GCs than whales that died from extended illness or injury (e.g. long-term entanglement in fishing gear). To test this hypothesis, we extracted hormones from baleen plates of four humpback whales (Megaptera novaeangliae) with well-documented deaths including multiple and chronic entanglements (n = 1, female), ship strike (n = 2, male and female) and chronic illness with nutritional stress (n = 1, male). Over ~3 years of baleen growth and during multiple entanglements, the entangled whale had average corticosterone levels of 80-187% higher than the other three whales but cortisol levels were similar to two of the other three whales. The nutritionally stressed and chronically ill whale showed a slow increase in both cortisol and corticosterone spanning ~3 years, followed by a sharp decline in both hormones before death, possibly indicative of adrenal failure in this moribund individual. This whale's correlation between cortisol and corticosterone was significant but there were no correlations in the other three whales. Our results show that cortisol and corticosterone concentrations vary according to the type and duration of illness or injury. Single-point GC concentrations should be interpreted with caution as low values can occur in whales experiencing pronounced stress and individual baselines can be highly variable. Baleen analysis is a promising tissue type for retrospective analyses of physiological responses to various stressors affecting baleen whales.

11.
R Soc Open Sci ; 7(5): 192046, 2020 May.
Article in English | MEDLINE | ID: mdl-32537203

ABSTRACT

Skin-associated microorganisms have been shown to play a role in immune function and disease of humans, but are understudied in marine mammals, a diverse animal group that serve as sentinels of ocean health. We examined the microbiota associated with 75 epidermal samples opportunistically collected from nine species within four marine mammal families, including: Balaenopteridae (sei and fin whales), Phocidae (harbour seal), Physeteridae (sperm whales) and Delphinidae (bottlenose dolphins, pantropical spotted dolphins, rough-toothed dolphins, short-finned pilot whales and melon-headed whales). The skin was sampled from free-ranging animals in Hawai'i (Pacific Ocean) and off the east coast of the United States (Atlantic Ocean), and the composition of the bacterial community was examined using the sequencing of partial small subunit (SSU) ribosomal RNA genes. Skin microbiotas were significantly different among host species and taxonomic families, and microbial community distance was positively correlated with mitochondrial-based host genetic divergence. The oceanic location could play a role in skin microbiota variation, but skin from species sampled in both locations is necessary to determine this influence. These data suggest that a phylosymbiotic relationship may exist between microbiota and their marine mammal hosts, potentially providing specific health and immune-related functions that contribute to the success of these animals in diverse ocean ecosystems.

12.
Mol Biol Evol ; 36(8): 1746-1763, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31070747

ABSTRACT

Cetaceans are a clade of highly specialized aquatic mammals that include the largest animals that have ever lived. The largest whales can have ∼1,000× more cells than a human, with long lifespans, leaving them theoretically susceptible to cancer. However, large-bodied and long-lived animals do not suffer higher risks of cancer mortality than humans-an observation known as Peto's Paradox. To investigate the genomic bases of gigantism and other cetacean adaptations, we generated a de novo genome assembly for the humpback whale (Megaptera novaeangliae) and incorporated the genomes of ten cetacean species in a comparative analysis. We found further evidence that rorquals (family Balaenopteridae) radiated during the Miocene or earlier, and inferred that perturbations in abundance and/or the interocean connectivity of North Atlantic humpback whale populations likely occurred throughout the Pleistocene. Our comparative genomic results suggest that the evolution of cetacean gigantism was accompanied by strong selection on pathways that are directly linked to cancer. Large segmental duplications in whale genomes contained genes controlling the apoptotic pathway, and genes inferred to be under accelerated evolution and positive selection in cetaceans were enriched for biological processes such as cell cycle checkpoint, cell signaling, and proliferation. We also inferred positive selection on genes controlling the mammalian appendicular and cranial skeletal elements in the cetacean lineage, which are relevant to extensive anatomical changes during cetacean evolution. Genomic analyses shed light on the molecular mechanisms underlying cetacean traits, including gigantism, and will contribute to the development of future targets for human cancer therapies.


Subject(s)
Evolution, Molecular , Genome , Humpback Whale/genetics , Neoplasms/genetics , Selection, Genetic , Adaptation, Biological , Animals , Apoptosis/genetics , Demography , Genes, Tumor Suppressor , Phylogeny
13.
Gen Comp Endocrinol ; 280: 24-34, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30951726

ABSTRACT

Fecal hormone analysis shows high potential for noninvasive assessment of population-level patterns in stress and reproduction of marine mammals. However, the marine environment presents unique challenges for fecal sample collection. Data are still lacking on collection methodology and assay validations for most species, particularly for those mysticete whales that have variable diets. In this study we tested collection techniques for fecal samples of free-swimming humpback whales (Megaptera novaeangliae), and validated immunoassays for five steroid and thyroid hormones. Resulting data were used for preliminary physiological validations, i.e., comparisons to independently confirmed sex and reproductive state. Pregnant females had significantly higher fecal progestins and glucocorticoids than did other demographic categories of whales. Two possible cases of previously undetected pregnancies were noted. Males had significantly higher fecal testosterone metabolites than nonpregnant females. Fecal glucocorticoids were significantly elevated in pregnant females and mature males compared to nonpregnant females. Calf fecal samples had elevated concentrations of all fecal hormones. Fecal thyroid hormones showed a significant seasonal decline from spring to summer. Though sample sizes were small, and sampling was necessarily opportunistic, these patterns indicate that noninvasive fecal hormone analysis may facilitate studies of reproduction, stress and potentially energetics in humpback whales.


Subject(s)
Feces/chemistry , Hormones/metabolism , Humpback Whale/physiology , Stress, Physiological , Animals , Female , Glucocorticoids/metabolism , Male , Metabolome , Pregnancy , Progestins/metabolism , Reproducibility of Results , Reproduction/physiology , Swimming/physiology , Testosterone/metabolism , Thyroid Hormones/metabolism
14.
Mol Phylogenet Evol ; 135: 86-97, 2019 06.
Article in English | MEDLINE | ID: mdl-30771513

ABSTRACT

The advent of massive parallel sequencing technologies has resulted in an increase of studies based upon complete mitochondrial genome DNA sequences that revisit the taxonomic status within and among species. Spatially distinct monophyly in such mitogenomic genealogies, i.e., the sharing of a recent common ancestor among con-specific samples collected in the same region has been viewed as evidence for subspecies. Several recent studies in cetaceans have employed this criterion to suggest subsequent intraspecific taxonomic revisions. We reason that employing intra-specific, spatially distinct monophyly at non-recombining, clonally inherited genomes is an unsatisfactory criterion for defining subspecies based upon theoretical (genetic drift) and practical (sampling effort) arguments. This point was illustrated by a re-analysis of a global mitogenomic assessment of fin whales, Balaenoptera physalus spp., published by Archer et al. (2013), which proposed to further subdivide the Northern Hemisphere fin whale subspecies, B. p. physalus. The proposed revision was based upon the detection of spatially distinct monophyly among North Atlantic and North Pacific fin whales in a genealogy based upon complete mitochondrial genome DNA sequences. The extended analysis conducted in this study (1676 mitochondrial control region, 162 complete mitochondrial genome DNA sequences and 20 microsatellite loci genotyped in 380 samples) revealed that the apparent monophyly among North Atlantic fin whales reported by Archer et al. (2013) to be due to low sample sizes. In conclusion, defining sub-species from monophyly (i.e., the absence of para- or polyphyly) can lead to erroneous conclusions due to relatively "trivial" aspects, such as sampling. Basic population genetic processes (i.e., genetic drift and migration) also affect the time to the most recent common ancestor and hence the probability that individuals in a sample are monophyletic.


Subject(s)
Fin Whale/classification , Fin Whale/genetics , Genome, Mitochondrial , Phylogeny , Animals , Base Sequence , Bayes Theorem , DNA, Mitochondrial/genetics , Genetic Variation , Genotype , Geography , Microsatellite Repeats/genetics
15.
Mar Pollut Bull ; 138: 222-229, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30660266

ABSTRACT

Abandoned, lost or discarded fishing gear (ALDFG) comprises a significant amount of global marine debris, with diverse impacts to marine environments, wildlife, and the fishing industry. Building evidence on ALDFG is critical to holistically understand the marine debris issue, and to inform the development of solutions that reduce amounts of ALDFG sources and recover existing gear. Substantial work has been and continues to be undertaken around the world to collect data on ALDFG, much of which remains unpublished. To provide a global picture of data on ALDFG, we organized a technical session that brought together seven ALDFG leaders to share their expertise in data collection, retrieval, and awareness-raising. This paper summarizes the technical session to highlight: 1) case studies that feature innovative approaches to ALDFG data collection and retrieval; 2) examples of opportunities to fill data gaps and improve our understanding of wildlife ingestion of and entanglement in ALDFG; and 3) awareness-raising through the development of a publicly accessible global ALDFG database.


Subject(s)
Equipment and Supplies , Fisheries , Water Pollution/prevention & control , Congresses as Topic , Environment
16.
Glob Chang Biol ; 25(4): 1466-1481, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30609213

ABSTRACT

In the context of a changing climate, understanding the environmental drivers of marine megafauna distribution is important for conservation success. The extent of humpback whale breeding habitats and the impact of temperature variation on their availability are both unknown. We used 19 years of dedicated survey data from seven countries and territories of Oceania (1,376 survey days), to investigate humpback whale breeding habitat diversity and adaptability to climate change. At a fine scale (1 km resolution), seabed topography was identified as an important influence on humpback whale distribution. The shallowest waters close to shore or in lagoons were favored, although humpback whales also showed flexible habitat use patterns with respect to shallow offshore features such as seamounts. At a coarse scale (1° resolution), humpback whale breeding habitats in Oceania spanned a thermal range of 22.3-27.8°C in August, with interannual variation up to 2.0°C. Within this range, both fine and coarse scale analyses of humpback whale distribution suggested local responses to temperature. Notably, the most detailed dataset was available from New Caledonia (774 survey days, 1996-2017), where encounter rates showed a negative relationship to sea surface temperature, but were not related to the El Niño Southern Oscillation or the Antarctic Oscillation from previous summer, a proxy for feeding conditions that may impact breeding patterns. Many breeding sites that are currently occupied are predicted to become unsuitably warm for this species (>28°C) by the end of the 21st century. Based on modeled ecological relationships, there are suitable habitats for relocation in archipelagos and seamounts of southern Oceania. Although distribution shifts might be restrained by philopatry, the apparent plasticity of humpback whale habitat use patterns and the extent of suitable habitats support an adaptive capacity to ocean warming in Oceania breeding grounds.

17.
Conserv Physiol ; 6(1): coy031, 2018.
Article in English | MEDLINE | ID: mdl-29942518

ABSTRACT

Baleen whales have few identifiable external indicators of pregnancy state, making it challenging to study essential aspects of their biology and population dynamics. Pregnancy status in other marine mammals has been determined by measuring progesterone concentrations from a variety of sample matrices, but logistical constraints have limited such studies in free-swimming baleen whales. We use an extensive blubber sample archive and associated calving history data to retrospectively identify samples that correspond to pregnant females and develop a progesterone-based pregnancy test for humpback whales. The lowest pregnant blubber progesterone concentration was 54.97 ng g-1, and the mean for the known-pregnant group was 198.74 ± 180.65 ng g-1. Conversely, females known to be below the minimum age of sexual maturity (juvenile females) had an overall low mean progesterone concentration (0.59 ± 0.25 ng g-1), well below the known-pregnant range. Of the mature females that did not return with a calf (n = 11), three fell within the known-pregnant range (320.79 ± 209.34 ng g-1), while the levels for the remaining eight were two orders of magnitude below the lowest known-pregnant level (1.63 ± 1.15 ng g-1). The proportion of females that did not return with a calf but had values similar to known-pregnant females are consistent with rates of calf mortality, but other potential explanations were considered. Our findings support a validated blubber endocrine assignment of pregnancy corroborated with field life history information, a first for any baleen whale species. The progesterone values we measured were similar to those found in different pregnancy states of other cetaceans and support using blubber biopsy samples for assigning pregnancy in humpback whales. This method can be applied to existing archives or new samples to better study life history and population demography broadly across species and populations.

18.
R Soc Open Sci ; 5(5): 180017, 2018 May.
Article in English | MEDLINE | ID: mdl-29892441

ABSTRACT

Antarctic humpback whales are recovering from near extirpation from commercial whaling. To understand the dynamics of this recovery and establish a baseline to monitor impacts of a rapidly changing environment, we investigated sex ratios and pregnancy rates of females within the Western Antarctic Peninsula (WAP) feeding population. DNA profiling of 577 tissue samples (2010-2016) identified 239 males and 268 females. Blubber progesterone levels indicated 63.5% of the females biopsied were pregnant. This proportion varied significantly across years, from 36% in 2010 to 86% in 2014. A comparison of samples collected in summer versus fall showed significant increases in the proportion of females present (50% to 59%) and pregnant (59% to 72%), consistent with demographic variation in migratory timing. We also found evidence of annual reproduction among females; 54.5% of females accompanied by a calf were pregnant. These high pregnancy rates are consistent with a population recovering from past exploitation, but appear inconsistent with recent estimates of WAP humpback population growth. Thus, our results will help to better understand population growth potential and set a current baseline from which to determine the impact of climate change and variability on fecundity and reproductive rates.

19.
Conserv Physiol ; 5(1): cox061, 2017.
Article in English | MEDLINE | ID: mdl-29230292

ABSTRACT

Recent studies have demonstrated that some hormones are present in baleen powder from bowhead (Balaena mysticetus) and North Atlantic right (Eubalaena glacialis) whales. To test the potential generalizability of this technique for studies of stress and reproduction in large whales, we sought to determine whether all major classes of steroid and thyroid hormones are detectable in baleen, and whether these hormones are detectable in other mysticetes. Powdered baleen samples were recovered from single specimens of North Atlantic right, bowhead, blue (Balaenoptera [B.]musculus), sei (B. borealis), minke (B. acutorostrata), fin (B. physalus), humpback (Megaptera novaeangliae) and gray (Eschrichtius robustus) whales. Hormones were extracted with a methanol vortex method, after which we tested all species with commercial enzyme immunoassays (EIAs, Arbor Assays) for progesterone, testosterone, 17ß-estradiol, cortisol, corticosterone, aldosterone, thyroxine and tri-iodothyronine, representing a wide array of steroid and thyroid hormones of interest for whale physiology research. In total, 64 parallelism tests (8 species × 8 hormones) were evaluated to verify good binding affinity of the assay antibodies to hormones in baleen. We also tested assay accuracy, although available sample volume limited this test to progesterone, testosterone and cortisol. All tested hormones were detectable in baleen powder of all species, and all assays passed parallelism and accuracy tests. Although only single individuals were tested, the consistent detectability of all hormones in all species indicates that baleen hormone analysis is likely applicable to a broad range of mysticetes, and that the EIA kits tested here perform well with baleen extract. Quantification of hormones in baleen may be a suitable technique with which to explore questions that have historically been difficult to address in large whales, including pregnancy and inter-calving interval, age of sexual maturation, timing and duration of seasonal reproductive cycles, adrenal physiology and metabolic rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...