Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Mol Biol Educ ; 51(1): 29-38, 2023 01.
Article in English | MEDLINE | ID: mdl-36314428

ABSTRACT

The limited capabilities of teaching laboratories, combined with an increasing number of students enrolled in university, require constant augmentation of instructional approaches. By enhancing laboratory demonstrations with digital technology, these structural issues can be addressed while at the same time enhancing student understanding and learning. Our case study focuses on the fermentation lab part of the Reaction Equilibria and Thermodynamics (RET) module, a first-year chemical engineering course at the University of Birmingham. Video demonstrations were used to introduce students to the laboratory set-ups and walk them through each step and technique. The video demonstrations allowed the students to attend the in-person lab sessions having established knowledge and understanding of the processes involved and the outcomes desired, which decreased the burden on the facilities and the staff. A knowledge-based quiz and a student survey conducted at the end of the module showed that the pre-lab videos encouraged more active participation in the laboratory sessions and reinforced learning. Approximately 70% of the students polled in the first survey conducted within this project felt more confident going into the laboratory sessions after watching the pre-lab videos and attempting the knowledge quiz, while 92% of the students polled in the second survey judged the pre-lab video sessions as beneficial to them. Overall, the teaching method has the potential to improve student participation and access, boost confidence and learning, and provided a more structured and flexible approach to laboratory learning outcomes.


Subject(s)
Chemical Engineering , Laboratories , Humans , Learning , Students
2.
PLoS One ; 10(11): e0141640, 2015.
Article in English | MEDLINE | ID: mdl-26558389

ABSTRACT

Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.


Subject(s)
Lab-On-A-Chip Devices , Printing, Three-Dimensional , Bacteria/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...