Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 10(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786719

ABSTRACT

Wound-invasive fungal diseases (WIFDs), especially mucormycosis, have emerged as life-threatening infections during recent military combat operations. Many combat-relevant fungal pathogens are refractory to current antifungal therapy. Therefore, animal models of WIFDs are urgently needed to investigate new therapeutic solutions. Our study establishes combat-relevant murine models of wound mucormycosis using Rhizopus arrhizus and Lichtheimia corymbifera, two Mucorales species that cause wound mucormycosis worldwide. These models recapitulate the characteristics of combat-related wounds from explosions, including blast overpressure exposure, full-thickness skin injury, fascial damage, and muscle crush. The independent inoculation of both pathogens caused sustained infections and enlarged wounds. Histopathological analysis confirmed the presence of necrosis and fungal hyphae in the wound bed and adjacent muscle tissue. Semi-quantification of fungal burden by colony-forming units corroborated the infection. Treatment with liposomal amphotericin B, 30 mg/kg, effectively controlled R. arrhizus growth and significantly reduced residual fungal burden in infected wounds (p < 0.001). This study establishes the first combat-relevant murine model of wound mucormycosis, paving the way for developing and evaluating novel antifungal therapies against combat-associated WIFDs.

2.
J Fungi (Basel) ; 9(10)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37888214

ABSTRACT

Mucorales species cause debilitating, life-threatening sinopulmonary diseases in immunocompromised patients and penetrating wounds in trauma victims. Common antifungal agents against mucormycosis have significant toxicity and are often ineffective. To evaluate treatments against mucormycosis, sporangiospores are typically used for in vitro assays and in pre-clinical animal models of pulmonary infections. However, in clinical cases of wound mucormycosis caused by traumatic inoculation, hyphal elements found in soil are likely the form of the inoculated organism. In this study, Galleria mellonella larvae were infected with either sporangiospores or hyphae of Rhizopus arrhizus and Lichtheimia corymbifera. Hyphal infections resulted in greater and more rapid larval lethality than sporangiospores, with an approximate 10-16-fold decrease in LD50 of hyphae for R. arrhizus (p = 0.03) and L. corymbifera (p = 0.001). Liposomal amphotericin B, 10 mg/kg, was ineffective against hyphal infection, while the same dosage was effective against infections produced by sporangiospores. Furthermore, in vitro, antifungal susceptibility studies show that minimum inhibitory concentrations of several antifungal agents against hyphae were higher when compared to those of sporangiospores. These findings support using hyphal elements of Mucorales species for virulence testing and antifungal drug screening in vitro and in G. mellonella for studies of wound mucormycosis.

3.
Am J Trop Med Hyg ; 108(1): 85-92, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36410321

ABSTRACT

Individuals infected with HIV-1 experience more frequent and more severe episodes of malaria and are likely to harbor asymptomatic parasitemia, thus potentially making them more efficient reservoirs of malaria. Two studies (cross-sectional and longitudinal) were designed in sequence between 2015-2018 and 2018-2020, respectively, to test the hypothesis that HIV-1 infected individuals have higher prevalence of asymptomatic parasitemia and gametocytemia than the HIV-1 negatives. This article describes the overall design of the two studies, encompassing data for the longitudinal study and additional data to the previously published baseline data for the cross-sectional study. In the cross-sectional study, HIV-1 positive participants were significantly older, more likely to be male, and more likely to have parasitemia relative to HIV-1 negatives (P < 0.01). In the longitudinal study, 300 participants were followed for 6 months. Of these, 102 were HIV-1 negative, 106 were newly diagnosed HIV-1 positive, and 92 were HIV-1 positive and on antiretroviral therapy, including antifolates, at enrollment. Overall parasitemia positivity at enrollment was 17.3% (52/300). Of these, 44% (23/52) were HIV-1 negative, 52% (27/52) were newly diagnosed HIV-1 positives, and only 4% (2/52) were HIV-1 positive and on treatment. Parasitemia for those on stable antiretroviral therapy was significantly lower (hazard ratio: 0.51, P < 0.001), compared with the HIV-1-negatives. On follow-up, there was a significant decline in parasitemia prevalence (hazard ratio: 0.74, P < 0.001) among the HIV patients newly initiated on antiretroviral therapy including trimethoprim-sulfamethoxasole. These data highlight the impact of HIV-1 and HIV treatment on asymptomatic parasitemia over time.


Subject(s)
Coinfection , HIV Infections , HIV Seropositivity , HIV-1 , Malaria, Falciparum , Malaria , Humans , Male , Female , Cross-Sectional Studies , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Longitudinal Studies , Kenya/epidemiology , Parasitemia/epidemiology , Parasitemia/diagnosis , Coinfection/epidemiology , Malaria/drug therapy , Malaria/epidemiology , Malaria, Falciparum/epidemiology
4.
Front Cell Infect Microbiol ; 12: 1025944, 2022.
Article in English | MEDLINE | ID: mdl-36506016

ABSTRACT

Interactions between malaria and HIV-1 have important public health implications. Our previous cross-sectional studies showed significant associations between HIV-1 positivity and malarial parasitemia with an increased risk of gametocytemia. In this follow-up longitudinal study, we evaluated these associations to determine the magnitude of asymptomatic parasitemia over time, and to examine the effects of initiating Antiretroviral Therapy (ART) together with the broad-spectrum antibiotic Trimethoprim Sulfamethoxazole (TS) on asymptomatic parasitemia. 300 adult volunteers in a malaria holoendemic region in Western Kenya were enrolled and followed for six months. The study groups were composed of 102 HIV-1 negatives, 106 newly diagnosed HIV-1 positives and 92 HIV-1 positives who were already stable on ART/TS. Blood samples were collected monthly and asymptomatic malarial parasitemia determined using sensitive 18S qPCR. Results showed significantly higher malaria prevalence in the HIV-1 negative group (61.4%) (p=0.0001) compared to HIV-1 positives newly diagnosed (36.5%) and those stable on treatment (31.45%). Further, treatment with ART/TS had an impact on incidence of asymptomatic parasitemia. In volunteers who were malaria PCR-negative at enrollment, the median time to detectable asymptomatic infection was shorter for HIV-1 negatives (149 days) compared to the HIV-1 positives on treatment (171 days) (p=0.00136). Initiation of HIV treatment among the newly diagnosed led to a reduction in malarial parasitemia (expressed as 18S copy numbers/µl) by over 85.8% within one week of treatment and a further reduction by 96% after 2 weeks. We observed that while the impact of ART/TS on parasitemia was long term, treatment with antimalarial Artemether/Lumefantrine (AL) among the malaria RDT positives had a transient effect with individuals getting re-infected after short periods. As was expected, HIV-1 negative individuals had normal CD4+ levels throughout the study. However, CD4+ levels among HIV-1 positives who started treatment were low at enrollment but increased significantly within the first month of treatment. From our association analysis, the decline in parasitemia among the HIV-1 positives on treatment was attributed to TS treatment and not increased CD4+ levels per se. Overall, this study highlights important interactions between HIV-1 and malaria that may inform future use of TS among HIV-infected patients in malaria endemic regions.


Subject(s)
Antimalarials , HIV Infections , HIV-1 , Malaria , Adult , Humans , HIV-1/genetics , Antimalarials/therapeutic use , Longitudinal Studies , Artemether, Lumefantrine Drug Combination , Artemether , Parasitemia/drug therapy , Parasitemia/epidemiology , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Malaria/drug therapy , Malaria/epidemiology , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology
5.
Front Cell Infect Microbiol ; 12: 934641, 2022.
Article in English | MEDLINE | ID: mdl-36189366

ABSTRACT

Despite significant developments towards malaria reduction, parasite transmission in the common context of HIV-1 co-infection and treatment for one or both infections has not been fully characterized. This is particularly important given that HIV-1 and malaria chemotherapies have the potential to alter gametocyte burden and mosquito infectivity. In this study, we examined 782 blood samples collected from a longitudinal cohort of 300 volunteers with asymptomatic parasitemia seeking HIV testing or treatment in the endemic region of Kisumu, Kenya, to define the impacts of HIV-1-malaria co-infection, antiretroviral therapy (ART) plus trimethoprim-sulfamethoxazole (TS) and the antimalarials artemether/lumefantrine (AL) on Plasmodium falciparum gametocyte transcript prevalence and parasite transmission to the African malaria mosquito Anopheles gambiae. Volunteers were assigned to three distinct HIV-1 groups: HIV-1 positive on treatment, HIV-1 positive newly diagnosed, and HIV-1 negative. Volunteers were monitored monthly over the course of six months. Using our highly sensitive digital droplet PCR (ddPCR) assay of three gametocyte specific transcript markers, we detected gametocyte transcripts in 51.1% of 18S positive volunteers across all study groups and time points. After correcting for multiple comparisons, the factors of HIV-1 status, time, CD4+ T-cell levels and hematocrit were not predictive of gametocyte prevalence or transmission. However, among those volunteers who were newly diagnosed with HIV-1 and malaria positive by rapid diagnostic test (RDT) at enrollment, the initiation of ART/TS and AL treatment was associated with a significant reduction in gametocyte transcript prevalence in the subsequent month when compared to HIV-1 negative volunteers treated with AL. To assess gametocyte transmissibility, volunteer blood samples were used in standard membrane feeding assays (SFMA) with laboratory-reared A. gambiae, with evidence of transmission confirmed by at least one of 25 dissected mosquitoes per sample positive for at least one midgut oocyst. HIV-1 status, CD4+ T-cell levels and hematocrit were not significantly associated with successful transmission to A. gambiae. Analysis of SMFA blood samples revealed that 50% of transmission-positive blood samples failed to test positive by Plasmodium-specific 18S ribosomal RNA quantitative PCR (qPCR) and 35% failed to test positive for any gametocyte specific transcript marker by droplet digital (ddPCR), documenting that transmission occurred in the absence of molecular parasite/gametocyte detection. Overall, these findings highlight the complexity of HIV-1 malaria co-infection and the need to further define the unpredictable role of asymptomatic parasitemia in transmission to mosquitoes.


Subject(s)
Anopheles , Antimalarials , Coinfection , HIV Infections , HIV-1 , Malaria, Falciparum , Malaria , Animals , Anopheles/parasitology , Antimalarials/therapeutic use , Artemether , Artemether, Lumefantrine Drug Combination/therapeutic use , HIV Infections/complications , HIV-1/genetics , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Parasitemia/parasitology , Plasmodium falciparum/genetics , RNA, Ribosomal, 18S , Trimethoprim, Sulfamethoxazole Drug Combination
6.
Front Cell Infect Microbiol ; 11: 656938, 2021.
Article in English | MEDLINE | ID: mdl-33912477

ABSTRACT

Malaria/HIV-1 co-infection has become a significant public health problem in the tropics where there is geographical overlap of the two diseases. It is well described that co-infection impacts clinical progression of both diseases; however, less is known about the impact of co-infection on disease transmission. Malaria transmission is dependent upon multiple critical factors, one of which is the presence and viability of the sexual-stage gametocyte. In this review, we summarize evidence surrounding gametocyte production in Plasmodium falciparum and the development factors and the consequential impact that HIV-1 has on malaria parasite transmission. Epidemiological and clinical evidence surrounding anemia, immune dysregulation, and chemotherapy as it pertains to co-infection and gametocyte transmission are reviewed. We discuss significant gaps in understanding that are often due to the biological complexities of both diseases as well as the lack of entomological data necessary to define transmission success. In particular, we highlight special epidemiological populations, such as co-infected asymptomatic gametocyte carriers, and the unique role these populations have in a future focused on malaria elimination and eradication.


Subject(s)
HIV-1 , Malaria, Falciparum , Malaria , Global Health , Humans , Plasmodium falciparum
SELECTION OF CITATIONS
SEARCH DETAIL
...