Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 21(12-13): 931-40, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11498340

ABSTRACT

Branches of field-grown Norway spruce (Picea abies (L.) Karst.) trees were exposed to either long-term ambient or to elevated CO2 concentrations ([CO2]) using the branch bag technique. The light-saturated photosynthetic rates (A(max)) of current-year shoots differing in nitrogen (N) status were measured at various temperatures and at either ambient (360 micromol mol(-1), AMB) or elevated (ambient + 350 micromol mol(-1), EL) [CO2]. The value of A(max) was determined at various intercellular [CO2]s (A/Ci curves) and used to normalize photosynthetic rates to the mean treatment C(i) values, which were 200 micromol mol(-1) (AMB) and 450 micromol mol(-1) (EL), respectively. Needle N status and temperature strongly affected A(max). The response to N increased with temperature, and the photosynthetic temperature optimum increased with N status. This was assumed to be a result of reduced mesophyll CO2 conductance. The relative increase of Amax in the EL treatment compared to the AMB treatment varied from 15 to 90%, and increased with temperature, but decreased with N status. Nevertheless, the absolute photosynthetic response to EL increased with shoot N status. The relative increase in the instantaneous response of A(max) to elevated [CO2] was about 20% higher than the long-term response, i.e., there was downward acclimation in Amax in response to elevated [CO2]. The photosynthetic temperature optimum increased 4 degrees C with either a short- or a long-term increase in [CO2]. The bag treatment itself increased A(max) by approximately 16% and the temperature optimum of A(max) by approximately 3 degrees C.


Subject(s)
Photosynthesis/physiology , Picea/physiology , Plant Shoots/physiology , Trees/physiology , Carbon Dioxide/physiology , Nitrogen/physiology , Plant Leaves/physiology , Temperature
2.
New Phytol ; 149(2): 247-264, 2001 Feb.
Article in English | MEDLINE | ID: mdl-33874628

ABSTRACT

• Data from 13 long-term (> 1 yr), field-based studies of the effects of elevated CO2 concentration ([CO2 ]) on European forest tree species were analysed using meta-analysis and modelling. Meta-analysis was used to determine mean responses across the data sets, and data were fitted to two commonly used models of stomatal conductance in order to explore response to environmental conditions and the relationship with assimilation. • Meta-analysis indicated a significant decrease (21%) in stomatal conductance in response to growth in elevated [CO2 ] across all studies. The response to [CO2 ] was significantly stronger in young trees than old trees, in deciduous compared to coniferous trees, and in water stressed compared to nutrient stressed trees. No evidence of acclimation of stomatal conductance to elevated [CO2 ] was found. • Fits of data to the first model showed that growth in elevated [CO2 ] did not alter the response of stomatal conductance to vapour pressure deficit, soil water content or atmospheric [CO2 ]. Fits of data to the second model indicated that conductance and assimilation responded in parallel to elevated [CO2 ] except when water was limiting. • Data were compared to a previous meta-analysis and it was found that the response of gs to elevated [CO2 ] was much more consistent in long-term (> 1 yr) studies, emphasising the need for long-term elevated [CO2 ] studies. By interpreting data in terms of models, the synthesis will aid future modelling studies of responses of forest trees to elevated [CO2 ].

SELECTION OF CITATIONS
SEARCH DETAIL
...