Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Microbiol Mol Biol Rev ; 88(1): e0002723, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38372526

ABSTRACT

SUMMARYThe endoplasmic reticulum (ER) is one of the most extensive organelles in eukaryotic cells. It performs crucial roles in protein and lipid synthesis and Ca2+ homeostasis. Most information on ER types, functions, organization, and domains comes from studies in uninucleate animal, plant, and yeast cells. In contrast, there is limited information on the multinucleate cells of filamentous fungi, i.e., hyphae. We provide an analytical review of existing literature to categorize different types of ER described in filamentous fungi while emphasizing the research techniques and markers used. Additionally, we identify the knowledge gaps that need to be resolved better to understand the structure-function correlation of ER in filamentous fungi. Finally, advanced technologies that can provide breakthroughs in understanding the ER in filamentous fungi are discussed.


Subject(s)
Fungal Proteins , Fungi , Animals , Fungal Proteins/metabolism , Fungi/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae/metabolism , Hyphae
2.
Front Cell Infect Microbiol ; 13: 1217103, 2023.
Article in English | MEDLINE | ID: mdl-37868353

ABSTRACT

The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Peritonitis , Animals , Mice , Anti-Bacterial Agents/pharmacology , Platelet Factor 4/chemistry , Platelet Factor 4/metabolism , Staphylococcus aureus/metabolism , Disease Models, Animal , Phagocytosis , Macrophage-1 Antigen/metabolism , Immunologic Factors , Peritonitis/drug therapy
3.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662328

ABSTRACT

The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.

4.
Fungal Genet Biol ; 162: 103729, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35944835

ABSTRACT

γ-Tubulin ring complexes (γ-TuRC) mediate nucleation and anchorage of microtubules (MTs) to microtubule organizing centers (MTOCs). In fungi, the spindle pole body (SPB) is the functional equivalent of the centrosome, which is the main MTOC. In addition, non-centrosomal MTOCs (ncMTOCs) contribute to MT formation in some fungi like Schizosaccharomyces pombe and Aspergillus nidulans. In A. nidulans, MTOCs are anchored at septa (sMTOC) and share components of the outer plaque of the SPB. Here we show that the Neurospora crassa SPB is embedded in the nuclear envelope, with the γ-TuRC targeting proteins PCP-1Pcp1/PcpA located at the inner plaque and APS-2Mto1/ApsB located at the outer plaque of the SPB. PCP-1 was a specific component of nuclear MTOCs, while APS-2 was also present at the septal pore. Although γ-tubulin was only detected at the nucleus, spontaneous MT nucleation occurred in the apical and subapical cytoplasm during recovery from benomyl-induced MT depolymerization experiments. There was no evidence for MT nucleation at septa. However, without benomyl treatment MT plus-ends were organized in the septal pore through MTB-3EB1. Those septal MT plus ends polymerized MTs from septa in interphase cells Thus we conclude that the SPB is the only MT nucleation site in N. crassa, but the septal pore aids the MT network arrangement through the anchorage of the MT plus-ends through a pseudo-MTOC.


Subject(s)
Carrier Proteins , Fungal Proteins , Microtubule-Associated Proteins , Neurospora crassa , Benomyl/metabolism , Carrier Proteins/metabolism , Fungal Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Neurospora crassa/genetics , Neurospora crassa/metabolism , Spindle Pole Bodies/metabolism , Tubulin/genetics
5.
mSphere ; 5(4)2020 08 12.
Article in English | MEDLINE | ID: mdl-32817450

ABSTRACT

Extracellular vesicles (EVs) are membranous compartments produced by yeast and mycelial forms of several fungal species. One of the difficulties in perceiving the role of EVs during the fungal life, and particularly in cell wall biogenesis, is caused by the presence of a thick cell wall. One alternative to have better access to these vesicles is to use protoplasts. This approach has been investigated here with Aspergillus fumigatus, one of the most common opportunistic fungal pathogens worldwide. Analysis of regenerating protoplasts by scanning electron microscopy and fluorescence microscopy indicated the occurrence of outer membrane projections in association with surface components and the release of particles with properties resembling those of fungal EVs. EVs in culture supernatants were characterized by transmission electron microscopy and nanoparticle tracking analysis. Proteomic and glycome analysis of EVs revealed the presence of a complex array of enzymes related to lipid/sugar metabolism, pathogenic processes, and cell wall biosynthesis. Our data indicate that (i) EV production is a common feature of different morphological stages of this major fungal pathogen and (ii) protoplastic EVs are promising tools for undertaking studies of vesicle functions in fungal cells.IMPORTANCE Fungal cells use extracellular vesicles (EVs) to export biologically active molecules to the extracellular space. In this study, we used protoplasts of Aspergillus fumigatus, a major fungal pathogen, as a model to evaluate the role of EV production in cell wall biogenesis. Our results demonstrated that wall-less A. fumigatus exports plasma membrane-derived EVs containing a complex combination of proteins and glycans. Our report is the first to characterize fungal EVs in the absence of a cell wall. Our results suggest that protoplasts represent a promising model for functional studies of fungal vesicles.


Subject(s)
Aspergillus fumigatus/physiology , Extracellular Vesicles/physiology , Proteomics , Protoplasts/physiology , Cell Wall/metabolism , Extracellular Vesicles/ultrastructure , Fungal Proteins/metabolism , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Organelle Biogenesis , Protoplasts/ultrastructure
6.
Mol Biol Cell ; 31(18): 2002-2020, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32579434

ABSTRACT

Macrophage fusion resulting in the formation of multinucleated giant cells (MGCs) is a multistage process that requires many adhesion-dependent steps and involves the rearrangement of the actin cytoskeleton. The diversity of actin-based structures and their role in macrophage fusion is poorly understood. In this study, we revealed hitherto unrecognized actin-based zipper-like structures (ZLSs) that arise between MGCs formed on the surface of implanted biomaterials. We established an in vitro model for the induction of these structures in mouse macrophages undergoing IL-4-mediated fusion. Using this model, we show that over time MGCs develop cell-cell contacts containing ZLSs. Live-cell imaging using macrophages isolated from mRFP- or eGFP-LifeAct mice demonstrated that ZLSs are dynamic formations undergoing continuous assembly and disassembly and that podosomes are precursors of these structures. Immunostaining experiments showed that vinculin, talin, integrin αMß2, and other components of podosomes are present in ZLSs. Macrophages deficient in WASp or Cdc42, two key molecules involved in actin core organization in podosomes, as well as cells treated with the inhibitors of the Arp2/3 complex, failed to form ZLSs. Furthermore, E-cadherin and nectin-2 were found between adjoining membranes, suggesting that the transition of podosomes into ZLSs is induced by bridging plasma membranes by junctional proteins.


Subject(s)
Actins/metabolism , Giant Cells/metabolism , Podosomes/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Animals , Cell Adhesion/physiology , Cell Membrane/metabolism , Cell Movement , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Talin/metabolism , Vinculin/metabolism , Wiskott-Aldrich Syndrome Protein/metabolism
7.
Fungal Genet Biol ; 125: 13-27, 2019 04.
Article in English | MEDLINE | ID: mdl-30615944

ABSTRACT

In filamentous fungi, polarized growth is the result of vesicle secretion at the hyphal apex. Motor proteins mediate vesicle transport to target destinations on the plasma membrane via actin and microtubule cytoskeletons. Myosins are motor proteins associated with actin filaments. Specifically, class V myosins are responsible for cargo transport in eukaryotes. We studied the dynamics and localization of myosin V in wild type hyphae of Neurospora crassa and in hyphae that lacked MYO-5. In wild type hyphae, MYO-5-GFP was localized concentrated in the hyphal apex and colocalized with Spitzenkörper. Photobleaching studies showed that MYO-5-GFP was transported to the apex from subapical hyphal regions. The deletion of the class V myosin resulted in a reduced rate of hyphal growth, apical hyperbranching, and intermittent loss of hyphal polarity. MYO-5 did not participate in breaking the symmetrical growth during germination but contributed in the apical organization upon establishment of polarized growth. In the Δmyo-5 mutant, actin was organized into thick cables in the apical and subapical hyphal regions, and the number of endocytic patches was reduced. The microvesicles-chitosomes observed with CHS-1-GFP were distributed as a cloud occupying the apical dome and not in the Spitzenkörper as the WT strain. The mitochondrial movement was not associated with MYO-5, but tubular vacuole position is MYO-5-dependent. These results suggest that MYO-5 plays a role in maintaining apical organization and the integrity of the Spitzenkörper and is required for normal hyphal growth, polarity, septation, conidiation, and proper conidial germination.


Subject(s)
Actin Cytoskeleton/genetics , Hyphae/genetics , Myosin Type V/genetics , Neurospora crassa/genetics , Cell Membrane/genetics , Cell Polarity/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/genetics , Green Fluorescent Proteins/genetics , Hyphae/growth & development , Neurospora crassa/growth & development
8.
Mycologia ; 110(1): 31-38, 2018.
Article in English | MEDLINE | ID: mdl-29864001

ABSTRACT

Characteristics of hyphal structure and growth can provide insights into the mechanisms of polarized growth and support investigations of fungal phylogeny. To assist with the resolution of evolutionary relationships of the zygomycetes, the authors used comparative bioimaging methods (light [LM] and transmission electron [TEM] microscopy) to describe selected subcellular characters of hyphal tips of Conidiobolus coronatus. Growing hyphae of C. coronatus contain Spitzenkörper (Spk). Spk are most commonly present in hyphae of Dikarya (Ascomycota and Basidiomycota) and are rarely reported in zygomycete hyphae, which possess an apical vesicle crescent (AVC). Such findings raise questions regarding the evolution of the Spk and its relationship with the AVC. Descriptions of additional subcellular characters (e.g., mitotic-phase spindle pole bodies, cytoplasmic behavior, organelle structure) are also presented.


Subject(s)
Conidiobolus/growth & development , Hyphae/growth & development , Conidiobolus/cytology , Hyphae/cytology , Microscopy , Microscopy, Electron, Transmission , Organelles/ultrastructure
9.
Fungal Genet Biol ; 117: 30-42, 2018 08.
Article in English | MEDLINE | ID: mdl-29601947

ABSTRACT

In Neurospora crassa hyphae the localization of all seven chitin synthases (CHSs) at the Spitzenkörper (SPK) and at developing septa has been well analyzed. Hitherto, the mechanisms of CHSs traffic and sorting from synthesis to delivery sites remain largely unexplored. In Saccharomyces cerevisiae exit of Chs3p from the endoplasmic reticulum (ER) requires chaperone Chs7p. Here, we analyzed the role of CSE-7, N. crassa Chs7p orthologue, in the biogenesis of CHS-4 (orthologue of Chs3p). In a N. crassa Δcse-7 mutant, CHS-4-GFP no longer accumulated at the SPK and septa. Instead, fluorescence was retained in hyphal subapical regions in an extensive network of elongated cisternae (NEC) referred to previously as tubular vacuoles. In a complemented strain expressing a copy of cse-7 the localization of CHS-4-GFP at the SPK and septa was restored, providing evidence that CSE-7 is necessary for the localization of CHS-4 at hyphal tips and septa. CSE-7 was revealed at delimited regions of the ER at the immediacies of nuclei, at the NEC, and remarkably also at septa and the SPK. The organization of the NEC was dependent on the cytoskeleton. SEC-63, an extensively used ER marker, and NCA-1, a SERCA-type ATPase previously localized at the nuclear envelope, were used as markers to discern the nature of the membranes containing CSE-7. Both SEC-63 and NCA-1 were found at the nuclear envelope, but also at regions of the NEC. However, at the NEC only NCA-1 co-localized extensively with CSE-7. Observations by transmission electron microscopy revealed abundant rough ER sheets and distinct electron translucent smooth flattened cisternae, which could correspond collectively to the NEC, thorough the subapical cytoplasm. This study identifies CSE-7 as the putative ER receptor for its cognate cargo, the polytopic membrane protein CHS-4, and elucidates the complexity of the ER system in filamentous fungi.


Subject(s)
Chitin Synthase/genetics , Hyphae/genetics , Membrane Proteins/genetics , Molecular Chaperones/genetics , Neurospora crassa/genetics , Saccharomyces cerevisiae Proteins/genetics , Cell Nucleus/genetics , Cytoplasm/genetics , Endoplasmic Reticulum/genetics , Fungal Proteins/genetics , Green Fluorescent Proteins/genetics , Hyphae/growth & development , Microtubules/genetics , Neurospora crassa/growth & development , Protein Transport/genetics , Saccharomyces cerevisiae/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
10.
ISME J ; 12(7): 1743-1757, 2018 06.
Article in English | MEDLINE | ID: mdl-29476142

ABSTRACT

Bacterial interactions with animals and plants have been examined for over a century; by contrast, the study of bacterial-fungal interactions has received less attention. Bacteria interact with fungi in diverse ways, and endobacteria that reside inside fungal cells represent the most intimate interaction. The most significant bacterial endosymbionts that have been studied are associated with Mucoromycota and include two main groups: Burkholderia-related and Mycoplasma-related endobacteria (MRE). Examples of Burkholderia-related endobacteria have been reported in the three Mucoromycota subphyla. By contrast, MRE have only been identified in Glomeromycotina and Mucoromycotina. This study aims to understand whether MRE dwell in Mortierellomycotina and, if so, to determine their impact on the fungal host. We carried out a large-scale screening of 394 Mortierellomycotina strains and employed a combination of microscopy, molecular phylogeny, next-generation sequencing and qPCR. We detected MRE in 12 strains. These endosymbionts represent novel bacterial phylotypes and show evidence of recombination. Their presence in Mortierellomycotina demonstrates that MRE occur within fungi across Mucoromycota and they may have lived in their common ancestor. We cured the fungus of its endosymbionts with antibiotics and observed improved biomass production in isogenic lines lacking MRE, demonstrating that these endobacteria impose some fitness costs to their fungal host. Here we provided the first functional insights into the lifestyle of MRE. Our findings indicate that MRE may be antagonistic to their fungal hosts, and adapted to a non-lethal parasitic lifestyle in the mycelium of Mucoromycota. However, context-dependent adaptive benefits to their host at minimal cost cannot not be excluded. Finally, we conclude that Mortierellomycotina represent attractive model organisms for exploring interactions between MRE and fungi.


Subject(s)
Burkholderia/physiology , Fungi/physiology , Mycoplasma/physiology , Symbiosis , Biodiversity , Burkholderia/classification , Burkholderia/genetics , Burkholderia/isolation & purification , Fungi/chemistry , Mycoplasma/classification , Mycoplasma/genetics , Mycoplasma/isolation & purification , Phylogeny
11.
Mycologia ; 108(5): 1028-1046, 2016 09.
Article in English | MEDLINE | ID: mdl-27738200

ABSTRACT

Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived clade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed.


Subject(s)
Fungi/classification , Fungi/genetics , Genome, Fungal , Phylogeny
12.
Cell Rep ; 14(11): 2511-8, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26972005

ABSTRACT

Protection by melanin depends on its subcellular location. Although most filamentous fungi synthesize melanin via a polyketide synthase pathway, where and how melanin biosynthesis occurs and how it is deposited as extracellular granules remain elusive. Using a forward genetic screen in the pathogen Aspergillus fumigatus, we find that mutations in an endosomal sorting nexin abolish melanin cell-wall deposition. We find that all enzymes involved in the early steps of melanin biosynthesis are recruited to endosomes through a non-conventional secretory pathway. In contrast, late melanin enzymes accumulate in the cell wall. Such subcellular compartmentalization of the melanin biosynthetic machinery occurs in both A. fumigatus and A. nidulans. Thus, fungal melanin biosynthesis appears to be initiated in endosomes with exocytosis leading to melanin extracellular deposition, much like the synthesis and trafficking of mammalian melanin in endosomally derived melanosomes.


Subject(s)
Aspergillus fumigatus/metabolism , Fungal Proteins/biosynthesis , Melanins/biosynthesis , 14-3-3 Proteins/metabolism , Aspergillus nidulans/metabolism , Cell Wall/metabolism , Endosomes/metabolism , Exocytosis , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Mutagenesis , Polyketide Synthases/metabolism , Protein Isoforms/metabolism , Protein Transport , Sorting Nexins/genetics , Sorting Nexins/metabolism , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
13.
Mycologia ; 108(3): 533-42, 2016.
Article in English | MEDLINE | ID: mdl-26908648

ABSTRACT

We have examined the hyphal tip structure in four zygomycetous fungi: Mortierella verticillata (Mortierellales), Coemansia reversa (Kickxellales), Mucor indicus and Gilbertella persicaria (Mucorales) using both light and transmission electron microscopy. We have used cryofixation and freeze-substitution methods to preserve fungal hyphae for transmission electron microscopy, which yielded improved preservation of ultrastructural details. Our research has confirmed studies that described the accumulation of secretory vesicles as a crescent at the hyphal apex (i.e. the apical vesicle crescent [AVC]) and provided a more detailed understanding of the vesicle populations. In addition, we have been able to observe the behavior of the AVC during hyphal growth in M. indicus and G. persicaria.


Subject(s)
Cytoplasm/ultrastructure , Fungi/growth & development , Hyphae/ultrastructure , Fungi/ultrastructure , Hyphae/growth & development , Microscopy, Electron, Transmission
14.
Fungal Genet Biol ; 82: 213-27, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26231681

ABSTRACT

LIS1 is a microtubule (Mt) plus-end binding protein that interacts with the dynein/dynactin complex. In humans, LIS1 is required for proper nuclear and organelle migration during cell growth. Although gene duplication is absent from Neurospora crassa, we found two paralogues of human LIS1. We named them LIS1-1 and LIS1-2 and studied their dynamics and function by fluorescent tagging. At the protein level, LIS1-1 and LIS1-2 were very similar. Although, the characteristic coiled-coil motif was not present in LIS1-2. LIS1-1-GFP and LIS1-2-GFP showed the same cellular distribution and dynamics, but LIS1-2-GFP was less abundant. Both LIS1 proteins were found in the subapical region as single fluorescent particles traveling toward the cell apex, they accumulated in the apical dome forming prominent short filament-like structures, some of which traversed the Spitzenkörper (Spk). The fluorescent structures moved exclusively in anterograde fashion along straight paths suggesting they traveled on Mts. There was no effect in the filament behavior of LIS1-1-GFP in the Δlis1-2 mutant but the dynamics of LIS1-2-GFP was affected in the Δlis1-1 mutant. Microtubular integrity and the dynein-dynactin complex were necessary for the formation of filament-like structures of LIS1-1-GFP in the subapical and apical regions; however, conventional kinesin (KIN-1) was not. Deletion mutants showed that the lack of lis1-1 decreased cell growth by ∼75%; however, the lack of lis1-2 had no effect on growth. A Δlis1-1;Δlis1-2 double mutant showed slower growth than either single mutant. Conidia production was reduced but branching rate increased in Δlis1-1 and the Δlis1-1;Δlis1-2 double mutants. The absence of LIS1-1 had a strong effect on Mt organization and dynamics and indirectly affected nuclear and mitochondrial distribution. The absence of LIS1-1 filaments in dynein mutants (ropy mutants) or in benomyl treated hyphae indicates the strong association between this protein and the regulation of the dynein-dynactin complex and Mt organization. LIS1-1 and LIS1-2 had a high amino acid homology, nevertheless, the absence of the coiled-coil motif in LIS1-2 suggests that its function or regulation may be distinct from that of LIS1-1.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Fungal Proteins/genetics , Microtubule-Associated Proteins/genetics , Neurospora crassa/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/chemistry , Amino Acid Sequence , Cell Nucleus/metabolism , Dynactin Complex , Dyneins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Gene Expression , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Molecular Sequence Data , Mutation , Neurospora crassa/metabolism , Protein Binding , Protein Transport , Recombinant Fusion Proteins , Sequence Alignment
15.
IMA Fungus ; 6(1): 215-31, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26203425

ABSTRACT

Basidioascus undulatus is a soil basidiomycete belonging to the order Geminibasidiales. The taxonomic status of the order was unclear as originally it was only tentatively classified in the class Wallemiomycetes. The fungi in Geminibasidiales have an ambiguously defined sexual cycle. In this study, we sequenced the genome of B. undulatus to gain insights into its sexuality and evolutionary origins. The assembled genome draft was approximately 32 Mb in size, had a median nucleotide coverage of 24X, and contained 6123 predicted genes. Previous morphological descriptions of B. undulatus relied on interpretation of putative sexual structures. In this study, nuclear staining and confocal microscopy showed meiosis occurring in basidia and genome analysis confirmed the existence of genes involved in meiosis and mating. Using 35 protein-coding genes extracted from genomic information, phylogenomic and molecular dating analyses confirmed that B. undulatus indeed belongs to a lineage distantly related to Wallemia while retaining a basal position in Agaricomycotina. These results, combined with differences in septal pore morphology, led us to move the order Geminibasidiales out of the Wallemiomycetes and into the new class Geminibasidiomycetes cl. nov. Finally, the concept of Agaricomycotina is emended to include both Wallemiomycetes and Geminibasidiomycetes.

16.
Am J Bot ; 102(5): 707-17, 2015 May.
Article in English | MEDLINE | ID: mdl-26022485

ABSTRACT

PREMISE OF THE STUDY: The earliest eukaryotes were likely flagellates with a centriole that nucleates the centrosome, the microtubule-organizing center (MTOC) for nuclear division. The MTOC in higher fungi, which lack flagella, is the spindle pole body (SPB). Can we detect stages in centrosome evolution leading to the diversity of SPB forms observed in terrestrial fungi? Zygomycetous fungi, which consist of saprobes, symbionts, and parasites of animals and plants, are critical in answering the question, but nuclear division has been studied in only two of six clades. METHODS: Ultrastructure of mitosis was studied in Coemansia reversa (Kickxellomycotina) germlings using cryofixation or chemical fixation. Character evolution was assessed by parsimony analysis, using a phylogenetic tree assembled from multigene analyses. KEY RESULTS: At interphase the SPB consisted of two components: a cytoplasmic, electron-dense sphere containing a cylindrical structure with microtubules oriented nearly perpendicular to the nucleus and an intranuclear component appressed to the nuclear envelope. Markham's rotation was used to reinforce the image of the cylindrical structure and determine the probable number of microtubules as nine. The SPB duplicated early in mitosis and separated on the intact nuclear envelope. Nuclear division appears to be intranuclear with spindle and kinetochore microtubules interspersed with condensed chromatin. CONCLUSIONS: This is the sixth type of zygomycetous SPB, and the third type that suggests a modified centriolar component. Coemansia reversa retains SPB character states from an ancestral centriole intermediate between those of fungi with motile cells and other zygomycetous fungi and Dikarya.


Subject(s)
Evolution, Molecular , Fungi/physiology , Mitosis , Spindle Pole Bodies/physiology , Fungi/ultrastructure , Microscopy, Electron , Nuclear Envelope/physiology , Nuclear Envelope/ultrastructure , Phylogeny , Spindle Pole Bodies/ultrastructure
17.
Mycologia ; 107(4): 710-28, 2015.
Article in English | MEDLINE | ID: mdl-25911696

ABSTRACT

The evolution of filamentous hyphae underlies an astounding diversity of fungal form and function. We studied the cellular structure and evolutionary origins of the filamentous form in the Monoblepharidomycetes (Chytridiomycota), an early-diverging fungal lineage that displays an exceptional range of body types, from crescent-shaped single cells to sprawling hyphae. To do so, we combined light and transmission electron microscopic analyses of hyphal cytoplasm with molecular phylogenetic reconstructions. Hyphae of Monoblepharidomycetes lack a complex aggregation of secretory vesicles at the hyphal apex (i.e. Spitzenkörper), have centrosomes as primary microtubule organizing centers and have stacked Golgi cisternae instead of tubular/fenestrated Golgi equivalents. The cytoplasmic distribution of actin in Monoblepharidomycetes is comparable to the arrangement observed previously in other filamentous fungi. To discern the origins of Monoblepharidomycetes hyphae, we inferred a phylogeny of the fungi based on 18S and 28S ribosomal DNA sequence data with maximum likelihood and Bayesian inference methods. We focused sampling on Monoblepharidomycetes to infer intergeneric relationships within the class and determined 78 new sequences. Analyses showed class Monoblepharidomycetes to be monophyletic and nested within Chytridiomycota. Hyphal Monoblepharidomycetes formed a clade sister to the genera without hyphae, Harpochytrium and Oedogoniomyces. A likelihood ancestral state reconstruction indicated that hyphae arose independently within the Monoblepharidomycetes lineage and in at least two other lineages. Cytological differences among monoblepharidalean and other fungal hyphae are consistent with these convergent origins.


Subject(s)
Chytridiomycota/cytology , Chytridiomycota/genetics , Phylogeny , Biological Evolution , Chytridiomycota/classification , Chytridiomycota/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Fungal Proteins/genetics , Hyphae/classification , Hyphae/cytology , Hyphae/genetics , Hyphae/isolation & purification , Molecular Sequence Data
18.
Mol Biol Cell ; 25(8): 1312-26, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24523289

ABSTRACT

Fungal hyphae are among the most highly polarized cells. Hyphal polarized growth is supported by tip-directed transport of secretory vesicles, which accumulate temporarily in a stratified manner in an apical vesicle cluster, the Spitzenkörper. The exocyst complex is required for tethering of secretory vesicles to the apical plasma membrane. We determined that the presence of an octameric exocyst complex is required for the formation of a functional Spitzenkörper and maintenance of regular hyphal growth in Neurospora crassa. Two distinct localization patterns of exocyst subunits at the hyphal tip suggest the dynamic formation of two assemblies. The EXO-70/EXO-84 subunits are found at the peripheral part of the Spitzenkörper, which partially coincides with the outer macrovesicular layer, whereas exocyst components SEC-5, -6, -8, and -15 form a delimited crescent at the apical plasma membrane. Localization of SEC-6 and EXO-70 to the plasma membrane and the Spitzenkörper, respectively, depends on actin and microtubule cytoskeletons. The apical region of exocyst-mediated vesicle fusion, elucidated by the plasma membrane-associated exocyst subunits, indicates the presence of an exocytotic gradient with a tip-high maximum that dissipates gradually toward the subapex, confirming the earlier predictions of the vesicle supply center model for hyphal morphogenesis.


Subject(s)
Hyphae/growth & development , Neurospora crassa/growth & development , Secretory Vesicles/metabolism , Vesicular Transport Proteins/metabolism , Actin Cytoskeleton , Cell Membrane , Cell Polarity , Exocytosis , Fungal Proteins/metabolism , Green Fluorescent Proteins/genetics , Hyphae/metabolism , Microtubules , Protein Structure, Tertiary
19.
PLoS Pathog ; 9(11): e1003716, 2013.
Article in English | MEDLINE | ID: mdl-24244155

ABSTRACT

α-(1,3)-Glucan is a major component of the cell wall of Aspergillus fumigatus, an opportunistic human fungal pathogen. There are three genes (AGS1, AGS2 and AGS3) controlling the biosynthesis of α-(1,3)-glucan in this fungal species. Deletion of all the three AGS genes resulted in a triple mutant that was devoid of α-(1,3)-glucan in its cell wall; however, its growth and germination was identical to that of the parental strain in vitro. In the experimental murine aspergillosis model, this mutant was less pathogenic than the parental strain. The AGS deletion resulted in an extensive structural modification of the conidial cell wall, especially conidial surface where the rodlet layer was covered by an amorphous glycoprotein matrix. This surface modification was responsible for viability reduction of conidia in vivo, which explains decrease in the virulence of triple agsΔ mutant.


Subject(s)
Aspergillosis/enzymology , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/pathogenicity , Cell Wall/enzymology , Fungal Polysaccharides/biosynthesis , Fungal Proteins/metabolism , Glucosyltransferases/metabolism , Animals , Aspergillosis/genetics , Aspergillosis/pathology , Aspergillus fumigatus/genetics , Cell Wall/genetics , Fungal Polysaccharides/genetics , Fungal Proteins/genetics , Gene Deletion , Glucosyltransferases/genetics , Humans , Mice, Knockout , Spores, Fungal/enzymology , Spores, Fungal/genetics
20.
Photosynth Res ; 118(1-2): 37-49, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24052269

ABSTRACT

Transmission electron microscopy has been used to identify poly-3-hydroxybutyrate (PHB) granules in cyanobacteria for over 40 years. Spherical inclusions inside the cell that are electron-transparent and/or slightly electron-dense and that are found in transmission electron micrographs of cyanobacteria are generally assumed to be PHB granules. The aim of this study was to test this assumption in different strains of the cyanobacterium Synechocystis sp. PCC 6803. Inclusions that resemble PHB granules were present in strains lacking a pair of genes essential for PHB synthesis and in wild-type cells under conditions that no PHB granules could be detected by fluorescence staining of PHB. Indeed, in these cells PHB could not be demonstrated chemically by GC/MS either. Based on the results gathered, it is concluded that not all the slightly electron-dense spherical inclusions are PHB granules in Synechocystis sp. PCC 6803. This result is potentially applicable to other cyanobacteria. Alternate assignments for these inclusions are discussed.


Subject(s)
Hydroxybutyrates/analysis , Polyesters/analysis , Synechocystis/chemistry , Gas Chromatography-Mass Spectrometry , Hydroxybutyrates/administration & dosage , Hydroxybutyrates/metabolism , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Polyesters/administration & dosage , Polyesters/metabolism , Synechocystis/metabolism , Synechocystis/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...