Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(6): 114243, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38805398

ABSTRACT

Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.


Subject(s)
Induced Pluripotent Stem Cells , Xeroderma Pigmentosum , Xeroderma Pigmentosum/pathology , Xeroderma Pigmentosum/metabolism , Xeroderma Pigmentosum/genetics , Induced Pluripotent Stem Cells/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Oxidative Stress , Endoplasmic Reticulum Stress , Proteasome Endopeptidase Complex/metabolism , Cell Differentiation , DNA Damage , Models, Biological , Multiomics
2.
Sensors (Basel) ; 23(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37896566

ABSTRACT

Autonomous driving is a complex task that requires high-level hierarchical reasoning. Various solutions based on hand-crafted rules, multi-modal systems, or end-to-end learning have been proposed over time but are not quite ready to deliver the accuracy and safety necessary for real-world urban autonomous driving. Those methods require expensive hardware for data collection or environmental perception and are sensitive to distribution shifts, making large-scale adoption impractical. We present an approach that solely uses monocular camera inputs to generate valuable data without any supervision. Our main contributions involve a mechanism that can provide steering data annotations starting from unlabeled data alongside a different pipeline that generates path labels in a completely self-supervised manner. Thus, our method represents a natural step towards leveraging the large amounts of available online data ensuring the complexity and the diversity required to learn a robust autonomous driving policy.

3.
Orphanet J Rare Dis ; 15(1): 4, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31910860

ABSTRACT

Hereditary Hemorrhagic Telangiectasia (HHT), also known as Rendu-Osler syndrome, is a genetic vascular disorder affecting 1 in 5000-8000 individuals worldwide. This rare disease is characterized by various vascular defects including epistaxis, blood vessel dilations (telangiectasia) and arteriovenous malformations (AVM) in several organs. About 90% of the cases are associated with heterozygous mutations of ACVRL1 or ENG genes, that respectively encode a bone morphogenetic protein receptor (activin receptor-like kinase 1, ALK1) and a co-receptor named endoglin. Less frequent mutations found in the remaining 10% of patients also affect the gene SMAD4 which is part of the transcriptional complex directly activated by this pathway. Presently, the therapeutic treatments for HHT are intended to reduce the symptoms of the disease. However, recent progress has been made using drugs that target VEGF (vascular endothelial growth factor) and the angiogenic pathway with the use of bevacizumab (anti-VEGF antibody). Furthermore, several exciting high-throughput screenings and preclinical studies have identified new molecular targets directly related to the signaling pathways affected in the disease. These include FKBP12, PI3-kinase and angiopoietin-2. This review aims at reporting these recent developments that should soon allow a better care of HHT patients.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic/drug therapy , Telangiectasia, Hereditary Hemorrhagic/metabolism , Bevacizumab/therapeutic use , Drug Repositioning/methods , High-Throughput Screening Assays , Humans , Smad4 Protein/metabolism , Tacrolimus , Vascular Malformations/drug therapy , Vascular Malformations/metabolism
4.
Circ Res ; 124(6): 846-855, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30636542

ABSTRACT

RATIONALE: Although many familial cases of pulmonary arterial hypertension exhibit an autosomal dominant mode of inheritance with the majority having mutations in essential constituents of the BMP (bone morphogenetic protein) signaling, the specific contribution of the long-term loss of signal transduction triggered by the BMPR2 (type 2 BMP receptor) remains poorly characterized. OBJECTIVE: To investigate the role of BMP9, the main ligand of ALK1 (Activin receptor-like kinase 1)/BMPR2 heterocomplexes, in pulmonary hypertension. METHOD AND RESULTS: The absence of BMP9 in Bmp9-/- mice and its inhibition in C57BL/6 mice using neutralizing anti-BMP9 antibodies substantially prevent against chronic hypoxia-induced pulmonary hypertension judged by right ventricular systolic pressure measurement, right ventricular hypertrophy, and pulmonary distal arterial muscularization. In agreement with these observations, we found that the BMP9/BMP10 ligand trap ALK1ECD administered in monocrotaline or Sugen/hypoxia (SuHx) rats substantially attenuate proliferation of pulmonary vascular cells, inflammatory cell infiltration, and regresses established pulmonary hypertension in rats. Our data obtained in human pulmonary endothelial cells derived from controls and pulmonary arterial hypertension patients indicate that BMP9 can affect the balance between endothelin-1, apelin, and adrenomedullin. We reproduced these in vitro observations in mice chronically exposed to hypoxia, with Bmp9-/- mice exhibiting lower mRNA levels of the vasoconstrictor peptide ET-1 (endothelin-1) and higher levels of the 2 potent vasodilator factors apelin and ADM (adrenomedullin) compared with Bmp9+/+ littermates. CONCLUSIONS: Taken together, our data indicate that the loss of BMP9, by deletion or inhibition, has beneficial effects against pulmonary hypertension onset and progression.


Subject(s)
Growth Differentiation Factor 2/antagonists & inhibitors , Hypertension, Pulmonary/prevention & control , Activin Receptors, Type II/pharmacology , Animals , Cells, Cultured , Endothelin-1/genetics , Growth Differentiation Factor 2/physiology , Humans , Hypoxia/complications , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...