Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Type of study
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21253157

ABSTRACT

In the absence of an effective vaccine or monoclonal therapeutic, transfer of convalescent plasma (CCP) was proposed early in the SARS-CoV-2 pandemic as an easily accessible therapy. However, despite the global excitement around this historically valuable therapeutic approach, results from CCP trials have been mixed and highly debated. Unlike other therapeutic interventions, CCP represents a heterogeneous drug. Each CCP unit is unique and collected from an individual recovered COVID-19 patient, making the interpretation of therapeutic benefit more complicated. While the prevailing view in the field would suggest that it is administration of neutralizing antibodies via CCP that centrally provides therapeutic benefit to newly infected COVID-19 patients, many hospitalized COVID-19 patients already possess neutralizing antibodies. Importantly, the therapeutic benefit of antibodies can extend far beyond their simple ability to bind and block infection, especially related to their ability to interact with the innate immune system. In our work we deeply profiled the SARS-CoV-2-specific Fc-response in CCP donors, along with the recipients prior to and after CCP transfer, revealing striking SARS-CoV-2 specific Fc-heterogeneity across CCP units and their recipients. However, CCP units possessed more functional antibodies than acute COVID-19 patients, that shaped the evolution of COVID-19 patient humoral profiles via distinct immunomodulatory effects that varied by pre-existing SARS-CoV-2 Spike (S)-specific IgG titers in the patients. Our analysis identified surprising influence of both S and Nucleocapsid (N) specific antibody functions not only in direct antiviral activity but also in anti-inflammatory effects. These findings offer insights for more comprehensive interpretation of correlates of immunity in ongoing large scale CCP trials and for the design of next generation therapeutic design.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-096511

ABSTRACT

Broadly protective vaccines against known and pre-emergent coronaviruses are urgently needed. Critical to their development is a deeper understanding of cross-neutralizing antibody responses induced by natural human coronavirus (HCoV) infections. Here, we mined the memory B cell repertoire of a convalescent SARS donor and identified 200 SARS-CoV-2 binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of pre-existing memory B cells (MBCs) elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a new target for the rational design of pan-sarbecovirus vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL
...