Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-477597

ABSTRACT

As the SARS-CoV-2 pandemic enters its third year, vaccines that not only prevent disease, but also prevent transmission are needed to help reduce global disease burden. Currently approved parenteral vaccines induce robust systemic immunity, but poor immunity at the respiratory mucosa. Here we describe the development of a novel vaccine strategy, Prime and Spike, based on unadjuvanted intranasal spike boosting that leverages existing immunity generated by primary vaccination to elicit mucosal immune memory within the respiratory tract. We show that Prime and Spike induces robust T resident memory cells, B resident memory cells and IgA at the respiratory mucosa, boosts systemic immunity, and completely protects mice with partial immunity from lethal SARS-CoV-2 infection. Using divergent spike proteins, Prime and Spike enables induction of cross-reactive immunity against sarbecoviruses without invoking original antigenic sin. One-sentence summaryBroad sarbecovirus protective mucosal immunity is generated by unadjuvanted intranasal spike boost in preclinical model.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-118893

ABSTRACT

Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-Cov-2) has caused over 5,000,000 cases of Coronavirus disease (COVID-19) with significant fatality rate.1-3 Due to the urgency of this global pandemic, numerous therapeutic and vaccine trials have begun without customary safety and efficacy studies.4 Laboratory mice have been the stalwart of these types of studies; however, they do not support infection by SARS-CoV-2 due to the inability of its spike (S) protein to engage the mouse ortholog of its human entry receptor angiotensin-converting enzyme 2 (hACE2). While hACE2 transgenic mice support infection and pathogenesis,5 these mice are currently limited in availability and are restricted to a single genetic background. Here we report the development of a mouse model of SARS-CoV-2 based on adeno associated virus (AAV)-mediated expression of hACE2. These mice support viral replication and antibody production and exhibit pathologic findings found in COVID-19 patients as well as non-human primate models. Moreover, we show that type I interferons are unable to control SARS-CoV2 replication and drive pathologic responses. Thus, the hACE2-AAV mouse model enables rapid deployment for in-depth analysis following robust SARS-CoV-2 infection with authentic patient-derived virus in mice of diverse genetic backgrounds. This represents a much-needed platform for rapidly testing prophylactic and therapeutic strategies to combat COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...