Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
RMD Open ; 4(1): e000628, 2018.
Article in English | MEDLINE | ID: mdl-29531791

ABSTRACT

OBJECTIVES: To explore the functions of RUNX3 single nucleotide polymorphisms (SNPs) associated with ankylosing spondylitis (AS). METHODS: Individual SNP associations were evaluated in 4230 UK cases. Their effects on transcription factor (TF) binding, transcription regulation, chromatin modifications, gene expression and gene interactions were tested by database interrogation, luciferase reporter assays, electrophoretic mobility gel shifts, chromatin immunoprecipitation and real-time PCR. RESULTS: We confirmed the independent association of AS with rs4265380, which was robust (P=4.7×10-6) to conditioning on another nearby AS-associated RUNX3 SNP (rs4648889). A RUNX3 haplotype incorporating both SNPs was strongly associated with AS (OR 6.2; 95% CI 3.1 to 13.2, P=1.4×10-8). In a large UK cohort, rs4265380 is associated with leucocyte counts (including monocytes). RUNX3 expression is lower in AS peripheral blood mononuclear cells than healthy controls (P<0.002), independent of rs4265380 genotype. Enhancer function for this RUNX3 region was suggested by increased luciferase activity (approximately tenfold; P=0.005) for reporter constructs containing rs4265380. In monocytes, there was differential allelic binding of nuclear protein extracts to a 50 bp DNA probe containing rs4265380 that was strongly augmented by lipopolysaccharide activation. TF binding also included the histone modifier p300. There was enrichment for histone modifications associated with active enhancer elements (H3K27Ac and H3K79Me2) that may be allele dependent. Hi-C database interrogation showed chromosome interactions of RUNX3 bait with the nearby RP4-799D16.1 lincRNA. CONCLUSIONS: The association of AS with this RUNX3 regulatory region involves at least two SNPs apparently operating in different cell types. Monocytes may be potential therapeutic targets in AS.

2.
Front Immunol ; 9: 3132, 2018.
Article in English | MEDLINE | ID: mdl-30687330

ABSTRACT

Susceptibility to ankylosing spondylitis (AS) is polygenic with more than 100 genes identified to date. These include HLA-B27 and the aminopeptidases (ERAP1, ERAP2, and LNPEPS), which are involved in antigen processing and presentation to T-cells, and several genes (IL23R, IL6R, STAT3, JAK2, IL1R1/2, IL12B, and IL7R) involved in IL23 driven pathways of inflammation. AS is also strongly associated with polymorphisms in two transcription factors, RUNX3 and T-bet (encoded by TBX21), which are important in T-cell development and function. The influence of these genes on the pathogenesis of AS and their potential for identifying drug targets is discussed here.


Subject(s)
Core Binding Factor Alpha 3 Subunit/genetics , Gene Expression Regulation/immunology , Interleukin-23/metabolism , Spondylitis, Ankylosing/immunology , T-Box Domain Proteins/genetics , Aminopeptidases/genetics , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Core Binding Factor Alpha 3 Subunit/antagonists & inhibitors , Core Binding Factor Alpha 3 Subunit/metabolism , Gene Expression Regulation/drug effects , HLA-B27 Antigen/genetics , Humans , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Interleukin-23/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Molecular Targeted Therapy/methods , Polymorphism, Single Nucleotide , Receptors, Interleukin/immunology , Receptors, Interleukin/metabolism , Spondylitis, Ankylosing/genetics , T-Box Domain Proteins/antagonists & inhibitors , T-Box Domain Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 114(3): 558-561, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28049827

ABSTRACT

We investigated the proposal that ankylosing spondylitis (AS) is associated with unusual ERAP1 genotypes. ERAP1 haplotypes were constructed for 213 AS cases and 46 rheumatoid arthritis controls using family data. Haplotypes were generated from five common ERAP1 single nucleotide polymorphisms (SNPs)-rs2287987 (M349V), rs30187 (K528R), rs10050860 (D575N), rs17482078 (R725Q), and rs27044 (Q730E). Haplotype frequencies were compared using Fisher's exact test. ERAP1 haplotypes imputed from the International Genetics of AS Consortium (IGAS) Immunochip study were also studied. In the family study, we identified only four common ERAP1 haplotypes ("VRNQE," "MKDRQ," "MRDRE," and "MKDRE") in both AS cases and controls apart from two rare (<0.5%) previously unreported haplotypes. There were no examples of the unusual ERAP1 haplotype combination ("*001/*005") previously reported by others in 53% of AS cases. As expected, K528-bearing haplotypes were increased in the AS family study (AS 43% vs. control 35%), due particularly to an increase in the MKDRQ haplotype (AS 35% vs. control 25%, P = 0.01). This trend was replicated in the imputed Immunochip data for the two K528-bearing haplotypes MKDRQ (AS 33% vs. controls 27%, P = 1.2 × 10-24) and MKDRE (AS 8% vs. controls 7%, P = 0.004). The ERAP1 association with AS is therefore predominantly attributable to common ERAP1 haplotypes and haplotype combinations.


Subject(s)
Aminopeptidases/genetics , Minor Histocompatibility Antigens/genetics , Spondylitis, Ankylosing/genetics , Arthritis, Rheumatoid/genetics , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , HLA-B27 Antigen/genetics , Haplotypes , Humans , Male , Polymorphism, Single Nucleotide , Spondylitis, Ankylosing/enzymology , Spondylitis, Ankylosing/immunology
5.
Ann Rheum Dis ; 75(12): 2150-2156, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26916345

ABSTRACT

OBJECTIVES: To explore the functional basis for the association between ankylosing spondylitis (AS) and single-nucleotide polymorphisms (SNPs) in the IL23R-IL12RB2 intergenic region. METHODS: We performed conditional analysis on genetic association data and used epigenetic data on chromatin remodelling and transcription factor (TF) binding to identify the primary AS-associated IL23R-IL12RB2 intergenic SNP. Functional effects were tested in luciferase reporter assays in HEK293T cells and allele-specific TF binding was investigated by electrophoretic mobility gel shift assays. IL23R and IL12RB2 mRNA levels in CD4+ T cells were compared between cases homozygous for the AS-risk 'A' allele and the protective 'G' allele. The proportions of interleukin (IL)-17A+ and interferon (IFN)-γ+ CD4+ T-cells were measured by fluorescence-activated cell sorting and compared between these AS-risk and protective genotypes. RESULTS: Conditional analysis identified rs11209032 as the probable causal SNP within a 1.14 kb putative enhancer between IL23R and IL12RB2. Reduced luciferase activity was seen for the risk allele (p<0.001) and reduced H3K4me1 methylation observed in CD4+ T-cells from 'A/A' homozygotes (p=0.02). The binding of nuclear extract to the risk allele was decreased ∼3.5-fold compared with the protective allele (p<0.001). The proportion of IFN-γ+ CD4+ T-cells was increased in 'A/A' homozygotes (p=0.004), but neither IL23R nor IL12RB2 mRNA was affected. CONCLUSIONS: The rs11209032 SNP downstream of IL23R forms part of an enhancer, allelic variation of which may influence Th1-cell numbers. Homozygosity for the risk 'A' allele is associated with more IFN-γ-secreting (Th1) cells. Further work is necessary to explain the mechanisms for these important observations.


Subject(s)
Cell Differentiation/genetics , Receptors, Interleukin-12/genetics , Receptors, Interleukin/genetics , Spondylitis, Ankylosing/genetics , Th1 Cells/physiology , Adult , Alleles , DNA, Intergenic , Female , Flow Cytometry , Genetic Association Studies , Genetic Variation , Genotype , HEK293 Cells , Humans , Male , Polymorphism, Single Nucleotide
6.
Ann Rheum Dis ; 75(8): 1534-40, 2016 08.
Article in English | MEDLINE | ID: mdl-26452539

ABSTRACT

OBJECTIVES: To identify the functional basis for the genetic association of single nucleotide polymorphisms (SNP), upstream of the RUNX3 promoter, with ankylosing spondylitis (AS). METHODS: We performed conditional analysis of genetic association data and used ENCODE data on chromatin remodelling and transcription factor (TF) binding sites to identify the primary AS-associated regulatory SNP in the RUNX3 region. The functional effects of this SNP were tested in luciferase reporter assays. Its effects on TF binding were investigated by electrophoretic mobility gel shift assays and chromatin immunoprecipitation. RUNX3 mRNA levels were compared in primary CD8+ T cells of AS risk and protective genotypes by real-time PCR. RESULTS: The association of the RUNX3 SNP rs4648889 with AS (p<7.6×10(-14)) was robust to conditioning on all other SNPs in this region. We identified a 2 kb putative regulatory element, upstream of RUNX3, containing rs4648889. In reporter gene constructs, the protective rs4648889 'G' allele increased luciferase activity ninefold but significantly less activity (4.3-fold) was seen with the AS risk 'A' allele (p≤0.01). The binding of Jurkat or CD8+ T-cell nuclear extracts to the risk allele was decreased and IRF4 recruitment was reduced. The AS-risk allele also affected H3K4Me1 histone methylation and associated with an allele-specific reduction in RUNX3 mRNA (p<0.05). CONCLUSION: We identified a regulatory region upstream of RUNX3 that is modulated by rs4648889. The risk allele decreases TF binding (including IRF4) and reduces reporter activity and RUNX3 expression. These findings may have important implications for understanding the role of T cells and other immune cells in AS.


Subject(s)
Core Binding Factor Alpha 3 Subunit/genetics , Interferon Regulatory Factors/metabolism , Spondylitis, Ankylosing/genetics , Adult , Aged , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Core Binding Factor Alpha 3 Subunit/biosynthesis , Electrophoretic Mobility Shift Assay , Gene Expression Regulation , Genes, Reporter , Genetic Predisposition to Disease , Genotyping Techniques/methods , Humans , Middle Aged , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Spondylitis, Ankylosing/immunology , Transcription Factors/metabolism
7.
Chromosoma ; 122(6): 541-54, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23864360

ABSTRACT

Studies using human and mouse cells have revealed some changes to non-telomeric chromatin and gene expression in response to abnormally short telomeres. To investigate this further, we studied the effect of inheriting shorter telomeres on transcription and genetic stability at non-telomeric sites in the mouse. Using multiple generations of Terc knockout mice, we show that inheriting shorter telomeres from one parent increases the likelihood of transcriptional silencing at a non-telomeric green fluorescent protein (GFP) transgene inherited from the other parent. In these cases, silencing must occur at or after zygote formation. In grand-offspring from a G3 Terc (-/-) parent, transgene expression was further reduced and associated with increased DNA methylation and, surprisingly, reduced copy number at the transgene array. In these cases, the transgene had been passed through the germline of a Terc-compromised parent, providing an opportunity for meiotic events. Furthermore, genome-wide microarray analysis of copy number variations revealed greater genetic instability in G3 Terc (-/-) mice than detected in wild-type mice of the same genetic background. Our results have implications for the molecular mechanisms underlying premature-ageing syndromes, such as dyskeratosis congenita. In autosomal-dominant dyskeratosis congenita, progressive telomere shortening is seen as it passes down the generations, and this is associated with anticipation, i.e. the disease becomes more severe earlier. The underlying mechanism is not known, but has been considered to be simply associated with decreases in telomere length. Epigenetic and/or genetic changes at non-telomeric regions could, in theory, be involved.


Subject(s)
Epigenesis, Genetic , Telomere/genetics , Animals , DNA Copy Number Variations , DNA Methylation , Dyskeratosis Congenita/genetics , Female , Gene Expression Regulation , Gene Silencing , Genetic Loci , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Inbreeding , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , Pedigree , RNA/genetics , Telomerase/genetics , Transgenes
8.
Mamm Genome ; 24(5-6): 206-17, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23636699

ABSTRACT

Observations of inherited phenotypes that cannot be explained solely through genetic inheritance are increasing. Evidence points to transmission of non-DNA molecules in the gamete as mediators of the phenotypes. However, in most cases it is unclear what the molecules are, with DNA methylation, chromatin proteins, and small RNAs being the most prominent candidates. From a screen to generate novel mouse mutants of genes involved in epigenetic reprogramming, we produced a DNA methyltransferase 3b allele that is missing exon 13. Mice that are homozygous for the mutant allele have smaller stature and reduced viability, with particularly high levels of female post-natal death. Reduced DNA methylation was also detected at telocentric repeats and the X-linked Hprt gene. However, none of the abnormal phenotypes or DNA methylation changes worsened with multiple generations of homozygous mutant inbreeding. This suggests that in our model the abnormalities are reset each generation and the processes of transgenerational epigenetic reprogramming are effective in preventing their inheritance.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Mice/genetics , Alleles , Animals , Base Sequence , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Epigenesis, Genetic , Exons , Female , Homozygote , Male , Mice/growth & development , Mice/metabolism , Mice, Transgenic , Molecular Sequence Data , Pedigree , DNA Methyltransferase 3B
9.
Chromosoma ; 120(4): 377-85, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21553025

ABSTRACT

Studies carried out in cultured cells have implicated modifiers of epigenetic reprogramming in the regulation of telomere length, reporting elongation in cells that were null for DNA methyltransferase DNA methyltransferase 1 (Dnmt1), both de novo DNA methyltransferases, Dnmt3a and Dnmt3b or various histone methyltransferases. To investigate this further, we assayed telomere length in whole embryos or adult tissue from mice carrying mutations in four different modifiers of epigenetic reprogramming: Dnmt1, DNA methyltransferase 3-like, structural maintenance of chromosomes hinge domain containing 1, and forkhead box O3a. Terminal restriction fragment analysis was used to compare telomere length in homozygous mutants, heterozygous mutants and wild-type littermates. Contrary to expectation, we did not detect overall lengthening in the mutants, raising questions about the role of epigenetic processes in telomere length in vivo.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenomics , Forkhead Transcription Factors/genetics , Telomere/chemistry , Animals , Chromosomal Proteins, Non-Histone/deficiency , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/deficiency , DNA Methylation , Electrophoresis, Agar Gel , Embryo, Mammalian , Female , Forkhead Box Protein O3 , Forkhead Transcription Factors/deficiency , Gene Dosage , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Pregnancy , Restriction Mapping , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...