Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38617329

ABSTRACT

Traumatic brain injury (TBI) is an established risk factor for developing neurodegenerative disease. However, how TBI leads from acute injury to chronic neurodegeneration is limited to post-mortem models. There is a lack of connections between in vitro and in vivo TBI models that can relate injury forces to both macroscale tissue damage and brain function at the cellular level. Needle-induced cavitation (NIC) is a technique that can produce small cavitation bubbles in soft tissues, which allows us to relate small strains and strain rates in living tissue to ensuing acute and chronic cell death, tissue damage, and tissue remodeling. Here, we applied NIC to mouse brain slices to create a new model of TBI with high spatial and temporal resolution. We specifically targeted the hippocampus, which is a brain region critical for learning and memory and an area in which injury causes cognitive pathologies in humans and rodent models. By combining NIC with patch-clamp electrophysiology, we demonstrate that NIC in the Cornu Ammonis (CA)3 region of the hippocampus dynamically alters synaptic release onto CA1 pyramidal neurons in a cannabinoid 1 receptor (CB1R)-dependent manner. Further, we show that NIC induces an increase in extracellular matrix proteins associated with neural repair that is mitigated by CB1R antagonism. Together, these data lay the groundwork for advanced approaches in understanding how TBI impacts neural function at the cellular level, and the development of treatments that promote neural repair in response to brain injury.

2.
Sci Rep ; 13(1): 9181, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280307

ABSTRACT

Disruption of circadian rhythms, such as shift work and jet lag, are associated with negative physiological and behavioral outcomes, including changes in affective state, learning and memory, and cognitive function. The prefrontal cortex (PFC) is heavily involved in all of these processes. Many PFC-associated behaviors are time-of-day dependent, and disruption of daily rhythms negatively impacts these behavioral outputs. Yet how disruption of daily rhythms impacts the fundamental function of PFC neurons, and the mechanism(s) by which this occurs, remains unknown. Using a mouse model, we demonstrate that the activity and action potential dynamics of prelimbic PFC neurons are regulated by time-of-day in a sex specific manner. Further, we show that postsynaptic K+ channels play a central role in physiological rhythms, suggesting an intrinsic gating mechanism mediating physiological activity. Finally, we demonstrate that environmental circadian desynchronization alters the intrinsic functioning of these neurons independent of time-of-day. These key discoveries demonstrate that daily rhythms contribute to the mechanisms underlying the essential physiology of PFC circuits and provide potential mechanisms by which circadian disruption may impact the fundamental properties of neurons.


Subject(s)
Prefrontal Cortex , Pyramidal Cells , Male , Animals , Female , Pyramidal Cells/physiology , Prefrontal Cortex/physiology , Neurons/physiology , Cognition , Circadian Rhythm/physiology
3.
Front Endocrinol (Lausanne) ; 12: 772909, 2021.
Article in English | MEDLINE | ID: mdl-34987476

ABSTRACT

Central administration of fibroblast growth factor-1 (FGF1) results in long-lasting resolution of hyperglycemia in various rodent models, but the pre- and postsynaptic mechanisms mediating the central effects of FGF1 are unknown. Here we utilize electrophysiology recordings from neuronal populations in the arcuate nucleus of the hypothalamus (ARH), nucleus of the solitary tract (NTS), and area postrema (AP) to investigate the mechanisms underlying FGF1 actions. While FGF1 did not alter membrane potential in ARH-NPY-GFP neurons, it reversibly depolarized 83% of ARH-POMC-EGFP neurons and decreased the frequency of inhibitory inputs onto ARH-POMC-EGFP neurons. This depolarizing effect persisted in the presence of FGF receptor (R) blocker FIIN1, but was blocked by pretreatment with the voltage-gated sodium channel (VGSC) blocker tetrodotoxin (TTX). Non-FGF1 subfamilies can activate vascular endothelial growth factor receptors (VEGFR). Surprisingly, the VEGFR inhibitors axitinib and BMS605541 blocked FGF1 effects on ARH-POMC-EGFP neurons. We also demonstrate that FGF1 induces c-Fos in the dorsal vagal complex, activates NTS-NPY-GFP neurons through a FGFR mediated pathway, and requires VGSCs to activate AP neurons. We conclude that FGF1 acts in multiple brain regions independent of FGFRs. These studies present anatomical and mechanistic pathways for the future investigation of the pharmacological and physiological role of FGF1 in metabolic processes.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Area Postrema/drug effects , Fibroblast Growth Factor 1/pharmacology , Neurons/drug effects , Solitary Nucleus/drug effects , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Area Postrema/metabolism , Membrane Potentials/drug effects , Mice , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Solitary Nucleus/metabolism
4.
Fac Rev ; 10: 83, 2021.
Article in English | MEDLINE | ID: mdl-35028648

ABSTRACT

In order to survive and thrive, organisms must adapt to constantly changing environmental pressures. When there are significant shifts in the environment, the brain and body engage a set of physiological and behavioral countermeasures collectively known as the "stress response". These responses, which include changes at the cellular, systems, and organismal level, are geared toward protecting homeostasis and adapting physiological operating parameters so as to enable the organism to overcome short-term challenges. It is the shift of these well-organized acute responses to dysregulated chronic responses that leads to pathologies. In a sense, the protective measures become destructive, causing the myriad health problems that are associated with chronic stress. To further complicate the situation, these challenges need not be purely physical in nature. Indeed, psychosocial stressors such as ruminating about challenges at work, resource insecurity, and unstable social environments can engage the very same emergency threat systems and eventually lead to the same types of pathologies that sometimes are described as "burnout" in humans. This short review focuses on very recent empirical work exploring the effects of chronic stress on key brain circuits, metabolism and metabolic function, and immune function.

5.
Mol Metab ; 26: 18-29, 2019 08.
Article in English | MEDLINE | ID: mdl-31230943

ABSTRACT

OBJECTIVE: Reelin (RELN) is a large glycoprotein involved in synapse maturation and neuronal organization throughout development. Deficits in RELN signaling contribute to multiple psychological disorders, such as autism spectrum disorder, schizophrenia, and bipolar disorder. Nutritional stress alters RELN expression in brain regions associated with these disorders; however, the involvement of RELN in the neural circuits involved in energy metabolism is unknown. The RELN receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR) are involved in lipid metabolism and expressed in the hypothalamus. Here we explored the involvement of RELN in hypothalamic signaling and the impact of diet-induced obesity (DIO) on this system. METHODS: Adult male mice were fed a chow diet or maintained on a high-fat diet (HFD) for 12-16 weeks. HFD-fed DIO mice exhibited decreased ApoER2 and VLDLR expression and increased RELN protein in the hypothalamus. Electrophysiology was used to determine the mechanism by which the central fragment of RELN (CF-RELN) acts on arcuate nucleus (ARH) satiety-promoting proopiomelanocortin (POMC) neurons and the impact of DIO on this circuitry. RESULTS: CF-RELN exhibited heterogeneous presynaptic actions on inhibitory inputs onto ARH-POMC-EGFP neurons and consistent postsynaptic actions. Additionally, central administration of CF-RELN caused a significant increase in ARH c-Fos expression and an acute decrease in food intake and body weight. CONCLUSIONS: We conclude that RELN signaling is modulated by diet, that RELN is involved in synaptic signaling onto ARH-POMC neurons, and that altering central CF-RELN levels can impact food intake and body weight.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Obesity/metabolism , Pro-Opiomelanocortin/metabolism , Serine Endopeptidases/metabolism , Animals , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/chemically induced , Reelin Protein
6.
Physiol Behav ; 206: 166-174, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30951750

ABSTRACT

Early overnutrition disrupts leptin sensitivity and the development of hypothalamic pathways involved in the regulation of metabolism and feeding behavior. While previous studies have largely focused on the development of neuronal projections, few studies have examined the impact of early nutrition on hypothalamic synaptic physiology. In this study we characterized the synaptic development of proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH), their sensitivity to leptin, and the impact of early overnutrition on the development of these neurons. Electrophysiology recordings were performed in mouse ARH brain slices containing POMC-EGFP neurons from postnatal age (P) 7-9 through adulthood. We determined that pre- and postsynaptic components of inhibitory inputs increased throughout the first 3 weeks of the postnatal period, which coincided with a decreased membrane potential in POMC neurons. We then examined whether chronic postnatal overnutrition (CPO) altered these synaptic connections. CPO mice exhibited increased body weight and circulating leptin levels, as described previously. POMC neurons in CPO mice had an increase in post-synaptic inhibitory currents compared to controls at 2 weeks of age, but this effect reversed by the third week. In control mice we observed heterogenous effects of leptin on POMC neurons in early life that transitioned to predominantly stimulatory actions in adulthood. However, postnatal overfeeding resulted in POMC neurons becoming leptin-resistant which persisted into adulthood. These studies suggest that postnatal overfeeding alters the postsynaptic development of POMC neurons and induces long-lasting leptin resistance in ARH-POMC neurons.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Leptin/metabolism , Neurons/metabolism , Overnutrition/metabolism , Pro-Opiomelanocortin/metabolism , Synaptic Transmission/physiology , Animals , Mice
7.
Am J Physiol Regul Integr Comp Physiol ; 313(3): R229-R239, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28615161

ABSTRACT

Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT3Rs. Decreasing the glucose concentration also decreased both basal and 5-HT3R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT3R activity, and glucokinase.


Subject(s)
Action Potentials/physiology , Catecholamines/metabolism , Glucose/metabolism , Glutamic Acid/physiology , Neurons/physiology , Synaptic Transmission/physiology , Animals , Cells, Cultured , Excitatory Postsynaptic Potentials/physiology , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurotransmitter Agents/metabolism , Solitary Nucleus/cytology , Solitary Nucleus/physiology
8.
J Neurosci ; 32(46): 16530-8, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23152635

ABSTRACT

Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT(3) receptor antagonist ondansetron and mimicked by the 5-HT(3) receptor agonists SR5227 and mCPBG. In contrast, 5-HT(3) receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT(3) receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT(3) receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function.


Subject(s)
Catecholamines/physiology , Glutamic Acid/physiology , Neurons/drug effects , Serotonin/pharmacology , Solitary Nucleus/drug effects , Action Potentials/drug effects , Animals , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Female , Male , Mice , Patch-Clamp Techniques , Piperazines/pharmacology , Pyrazines/pharmacology , Quinoxalines/pharmacology , Receptors, Presynaptic/drug effects , Receptors, Serotonin, 5-HT3/drug effects , Serotonin Receptor Agonists/pharmacology , Solitary Nucleus/cytology , Tyrosine 3-Monooxygenase/genetics
9.
Am J Physiol Regul Integr Comp Physiol ; 302(11): R1313-26, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22492818

ABSTRACT

Neural sites that interact with the suprachiasmatic nuclei (SCN) to generate rhythms of unrestricted feeding remain unknown. We used the targeted toxin, leptin conjugated to saporin (Lep-SAP), to examine the importance of leptin receptor-B (LepR-B)-expressing neurons in the arcuate nucleus (Arc) for generation of circadian feeding rhythms. Rats given Arc Lep-SAP injections were initially hyperphagic and rapidly became obese (the "dynamic phase" of weight gain). During this phase, Lep-SAP rats were arrhythmic under 12:12-h light-dark (LD) conditions, consuming 59% of their total daily intake during the daytime, compared with 36% in blank-SAP (B-SAP) controls. Lep-SAP rats were also arrhythmic in continuous dark (DD), while significant circadian feeding rhythms were detected in all B-SAP controls. Approximately 8 wk after injection, Lep-SAP rats remained obese but transitioned into a "static phase" of weight gain marked by attenuation of their hyperphagia and rate of weight gain. In this phase, Arc Lep-SAP rats exhibited circadian feeding rhythms under LD conditions, but were arrhythmic in continuous light (LL) and DD. Lep-SAP injections into the ventromedial hypothalamic nucleus did not cause hyperphagia, obesity, or arrhythmic feeding in either LD or DD. Electrolytic lesion of the SCN produced feeding arrhythmia in DD but not hyperphagia or obesity. Results suggest that both Arc Lep-SAP neurons and SCN are required for generation of feeding rhythms entrained to photic cues, while also revealing an essential role for the Arc in maintaining circadian rhythms of ad libitum feeding independent of light entrainment.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Circadian Rhythm/physiology , Feeding Behavior/physiology , Neurons/metabolism , Obesity/physiopathology , Receptors, Leptin/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Circadian Rhythm/drug effects , Feeding Behavior/drug effects , Leptin/pharmacology , Male , Rats , Rats, Sprague-Dawley , Rats, Zucker , Real-Time Polymerase Chain Reaction , Ribosome Inactivating Proteins, Type 1/pharmacology , Saporins
SELECTION OF CITATIONS
SEARCH DETAIL
...