Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Chem Biol ; 31(4): 669-682.e7, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38266648

ABSTRACT

Pathogenic mycobacteria are a significant cause of morbidity and mortality worldwide. The conserved whiB7 stress response reduces the effectiveness of antibiotic therapy by activating several intrinsic antibiotic resistance mechanisms. Despite our comprehensive biochemical understanding of WhiB7, the complex set of signals that induce whiB7 expression remain less clear. We employed a reporter-based, genome-wide CRISPRi epistasis screen to identify a diverse set of 150 mycobacterial genes whose inhibition results in constitutive whiB7 expression. We show that whiB7 expression is determined by the amino acid composition of the 5' regulatory uORF, thereby allowing whiB7 to sense amino acid starvation. Although deprivation of many amino acids can induce whiB7, whiB7 specifically coordinates an adaptive response to alanine starvation by engaging in a feedback loop with the alanine biosynthetic enzyme, aspC. These findings describe a metabolic function for whiB7 and help explain its evolutionary conservation across mycobacterial species occupying diverse ecological niches.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium , Transcription Factors/metabolism , Alanine/genetics , Alanine/metabolism , Gene Expression Regulation, Bacterial , Mycobacterium/genetics , Mycobacterium/metabolism , Drug Resistance, Microbial , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/metabolism
3.
Glob Environ Change ; 83: 102765, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130391

ABSTRACT

Public perception of emerging climate technologies, such as greenhouse gas removal (GGR) and solar radiation management (SRM), will strongly influence their future development and deployment. Studying perceptions of these technologies with traditional survey methods is challenging, because they are largely unknown to the public. Social media data provides a complementary line of evidence by allowing for retrospective analysis of how individuals share their unsolicited opinions. Our large-scale, comparative study of 1.5 million tweets covers 16 GGR and SRM technologies and uses state-of-the-art deep learning models to show how attention, and expressions of sentiment and emotion developed between 2006 and 2021. We find that in recent years, attention has shifted from general geoengineering themes to specific GGR methods. On the other hand, there is little attention to specific SRM technologies and they often coincide with conspiracy narratives. Sentiments and emotions in GGR tweets tend to be more positive, particularly for methods perceived to be natural, but are more negative when framed in the geoengineering context.

4.
Nature ; 623(7989): 1001-1008, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968393

ABSTRACT

Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.


Subject(s)
Bacteria , Nucleotidyltransferases , RNA, Viral , Staphylococcus Phages , Animals , 2',5'-Oligoadenylate Synthetase/metabolism , Bacteria/enzymology , Bacteria/immunology , Evolution, Molecular , Immunity, Innate , Nucleotidyltransferases/metabolism , Oligonucleotides/immunology , Oligonucleotides/metabolism , RNA, Viral/immunology , RNA, Viral/metabolism , Signal Transduction/immunology , Staphylococcus Phages/genetics , Staphylococcus Phages/immunology
5.
EMBO J ; 42(18): e114318, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37555693

ABSTRACT

Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.


Subject(s)
Bacterial Proteins , Ubiquitin , Ubiquitin/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Bacteria/genetics , Bacteria/metabolism , Protein Processing, Post-Translational , Ubiquitination , Eukaryota/metabolism
6.
bioRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333137

ABSTRACT

Pathogenic mycobacteria are a significant cause of morbidity and mortality worldwide. These bacteria are highly intrinsically drug resistant, making infections challenging to treat. The conserved whiB7 stress response is a key contributor to mycobacterial intrinsic drug resistance. Although we have a comprehensive structural and biochemical understanding of WhiB7, the complex set of signals that activate whiB7 expression remain less clear. It is believed that whiB7 expression is triggered by translational stalling in an upstream open reading frame (uORF) within the whiB7 5' leader, leading to antitermination and transcription into the downstream whiB7 ORF. To define the signals that activate whiB7, we employed a genome-wide CRISPRi epistasis screen and identified a diverse set of 150 mycobacterial genes whose inhibition results in constitutive whiB7 activation. Many of these genes encode amino acid biosynthetic enzymes, tRNAs, and tRNA synthetases, consistent with the proposed mechanism for whiB7 activation by translational stalling in the uORF. We show that the ability of the whiB7 5' regulatory region to sense amino acid starvation is determined by the coding sequence of the uORF. The uORF shows considerable sequence variation among different mycobacterial species, but it is universally and specifically enriched for alanine. Providing a potential rationalization for this enrichment, we find that while deprivation of many amino acids can activate whiB7 expression, whiB7 specifically coordinates an adaptive response to alanine starvation by engaging in a feedback loop with the alanine biosynthetic enzyme, aspC. Our results provide a holistic understanding of the biological pathways that influence whiB7 activation and reveal an extended role for the whiB7 pathway in mycobacterial physiology, beyond its canonical function in antibiotic resistance. These results have important implications for the design of combination drug treatments to avoid whiB7 activation, as well as help explain the conservation of this stress response across a wide range of pathogenic and environmental mycobacteria.

7.
Biochemistry ; 60(48): 3738-3752, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34793140

ABSTRACT

ZupT fromEscherichia coliis a member of the Zrt-/Irt-like Protein (ZIP) transporter family, which is responsible for zinc uptake during zinc-sufficient conditions. ZIP transporters have been shown to transport different divalent metal ions including zinc, iron, manganese, and cadmium. In this study, we show that ZupT has an asymmetric binuclear metal center in the transmembrane domain; one metal-binding site, M1, binds zinc, cadmium, and iron, while the other, M2, binds iron only and with higher affinity than M1. Using site-specific mutagenesis and transport activity measurements in whole cells and proteoliposomes, we show that zinc is transported from M1, while iron is transported from M2. The two sites share a common bridging ligand, a conserved glutamate residue. M1 and M2 have ligands from highly conserved motifs in transmembrane domains 4 and 5. Additionally, M2 has a ligand from transmembrane domain 6, a glutamate residue, which is conserved in the gufA subfamily of ZIP transporters, including ZupT and the human ZIP11. Unlike cadmium, iron transport from M2 does not inhibit the zinc transport activity but slightly stimulates it. This stimulation of activity is mediated through the bridging carboxylate ligand. The binuclear zinc-iron binding center in ZupT has likely evolved to enable the transport of essential metals from two different sites without competition; a similar mechanism of metal transport is likely to be found in the gufA subfamily of ZIP transporter proteins.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Membrane Transport Proteins/chemistry , Metals/metabolism , Zinc/chemistry , Cadmium/metabolism , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Escherichia coli/chemistry , Escherichia coli Proteins/genetics , Iron/chemistry , Manganese/metabolism , Membrane Transport Proteins/genetics , Mutagenesis, Site-Directed , Protein Domains/genetics
8.
mSphere ; 5(6)2020 12 23.
Article in English | MEDLINE | ID: mdl-33361127

ABSTRACT

Plastics, such as polyethylene terephthalate (PET) from water bottles, are polluting our oceans, cities, and soils. While a number of Pseudomonas species have been described that degrade aliphatic polyesters, such as polyethylene (PE) and polyurethane (PUR), few from this genus that degrade the semiaromatic polymer PET have been reported. In this study, plastic-degrading bacteria were isolated from petroleum-polluted soils and screened for lipase activity that has been associated with PET degradation. Strains and consortia of bacteria were grown in a liquid carbon-free basal medium (LCFBM) with PET as the sole carbon source. We monitored several key physical and chemical properties, including bacterial growth and modification of the plastic surface, using scanning electron microscopy (SEM) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy. We detected by-products of hydrolysis of PET using 1H-nuclear magnetic resonance (1H NMR) analysis, consistent with the ATR-FTIR data. The full consortium of five strains containing Pseudomonas and Bacillus species grew synergistically in the presence of PET and the cleavage product bis(2-hydroxyethyl) terephthalic acid (BHET) as sole sources of carbon. Secreted enzymes extracted from the full consortium were capable of fully converting BHET to the metabolically usable monomers terephthalic acid (TPA) and ethylene glycol. Draft genomes provided evidence for mixed enzymatic capabilities between the strains for metabolic degradation of TPA and ethylene glycol, the building blocks of PET polymers, indicating cooperation and ability to cross-feed in a limited nutrient environment with PET as the sole carbon source. The use of bacterial consortia for the biodegradation of PET may provide a partial solution to widespread planetary plastic accumulation.IMPORTANCE While several research groups are utilizing purified enzymes to break down postconsumer PET to the monomers TPA and ethylene glycol to produce new PET products, here, we present a group of five soil bacteria in culture that are able to partially degrade this polymer. To date, mixed Pseudomonas spp. and Bacillus spp. biodegradation of PET has not been described, and this work highlights the possibility of using bacterial consortia to biodegrade or potentially to biorecycle PET plastic waste.


Subject(s)
Bacillus/metabolism , Plastics/metabolism , Polyethylene Terephthalates/metabolism , Pseudomonas/metabolism , Biodegradation, Environmental , Phthalic Acids
9.
Biochemistry ; 59(47): 4488-4498, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33190490

ABSTRACT

ZntA from Escherichia coli confers resistance to toxic concentrations of Pb2+, Zn2+, and Cd2+. It is a member of the P1B-ATPase transporter superfamily, which includes the human Cu+-transporting proteins ATP7A and ATP7B. P1B-type ATPases typically have a hydrophilic N-terminal metal-binding domain and eight transmembrane helices. A splice variant of ATP7B was reported, which has 100-fold higher night-specific expression in the pineal gland; it lacks the entire N-terminal domain and the first four transmembrane helices. Here, we report our findings with Δ231-ZntA, a similar truncation we created in ZntA. Δ231-ZntA has no in vivo and greatly reduced in vitro activity. It binds one metal ion per dimer at the transmembrane site, with a 15-19000-fold higher binding affinity, indicating highly significant changes in the dimer structure of Δ231-ZntA relative to that of ZntA. Cd2+ has the highest affinity for Δ231-ZntA, in contrast to ZntA, which has the highest affinity for Pb2+. Site-specific mutagenesis of the metal-binding residues, 392Cys, 394Cys, and 714Asp, showed that there is considerable flexibility at the metal-binding site, with any two of these three residues able to bind Zn2+ and Pb2+ unlike in ZntA. However, Cd2+ binds to only 392Cys and 714Asp, with 394Cys not involved in Cd2+ binding. Three-dimensional homology models show that there is a dramatic difference between the ZntA and Δ231-ZntA dimer structures, which help to explain these observations. Therefore, the first four transmembrane helices in ZntA and P1B-type ATPases play an important role in maintaining the correct dimer structure.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/physiology , Protein Interaction Domains and Motifs/physiology , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Binding Sites/drug effects , Binding Sites/genetics , Catalysis/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Kinetics , Metals/pharmacology , Models, Molecular , Mutagenesis, Site-Directed , Organisms, Genetically Modified , Protein Binding/drug effects , Protein Binding/genetics , Protein Interaction Domains and Motifs/drug effects , Protein Interaction Domains and Motifs/genetics , Protein Structure, Secondary/physiology , Structure-Activity Relationship
10.
EMBO J ; 39(15): e105127, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32567101

ABSTRACT

Manipulation of host ubiquitin signaling is becoming an increasingly apparent evolutionary strategy among bacterial and viral pathogens. By removing host ubiquitin signals, for example, invading pathogens can inactivate immune response pathways and evade detection. The ovarian tumor (OTU) family of deubiquitinases regulates diverse ubiquitin signals in humans. Viral pathogens have also extensively co-opted the OTU fold to subvert host signaling, but the extent to which bacteria utilize the OTU fold was unknown. We have predicted and validated a set of OTU deubiquitinases encoded by several classes of pathogenic bacteria. Biochemical assays highlight the ubiquitin and polyubiquitin linkage specificities of these bacterial deubiquitinases. By determining the ubiquitin-bound structures of two examples, we demonstrate the novel strategies that have evolved to both thread an OTU fold and recognize a ubiquitin substrate. With these new examples, we perform the first cross-kingdom structural analysis of the OTU fold that highlights commonalities among distantly related OTU deubiquitinases.


Subject(s)
Bacterial Proteins , Deubiquitinating Enzymes , Legionella/enzymology , Protein Folding , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Legionella/genetics , Polyubiquitin/chemistry , Polyubiquitin/genetics , Polyubiquitin/metabolism , Substrate Specificity
12.
Microbiol Resour Announc ; 8(25)2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31221643

ABSTRACT

Here, we report the annotated draft genome sequences of three Pseudomonas spp. and two Bacillus spp. that, as consortia, degrade polyethylene terephthalate plastic. Improved microbial degradation of plastic waste could help reduce the billions of metric tons of these materials that currently exist in our environment.

13.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Article in English | MEDLINE | ID: mdl-30753545

ABSTRACT

Many of the various parental care strategies displayed by animals are accompanied by a significant reduction in food intake that imposes a substantial energy trade-off. Mouthbrooding, as seen in several species of fish in which the parent holds the developing eggs and fry in the buccal cavity, represents an extreme example of reduced food intake during parental investment and is accompanied by a range of physiological adaptations. In this study we use 16S sequencing to characterize the gut microbiota of female Astatotilapia burtoni cichlid fish throughout the obligatory phase of self-induced starvation during the brooding cycle in comparison to stage-matched females that have been denied food for the same duration. In addition to a reduction of gut epithelial turnover, we find a dramatic reduction in species diversity in brooding stages that recovers upon release of fry and refeeding that is not seen in females that are simply starved. Based on overall species diversity as well as differential abundance of specific bacterial taxa, we suggest that rather than reflecting a simple deprivation of caloric intake, the gut microbiota is more strongly influenced by physiological changes specific to mouthbrooding including the reduced epithelial turnover and possible production of antimicrobial agents.


Subject(s)
Adaptation, Physiological/physiology , Cichlids/physiology , Consummatory Behavior/physiology , Intestines/physiology , Animals , Biological Evolution , Cichlids/microbiology , Female , Food , Gastrointestinal Microbiome/genetics , Intestines/cytology , Intestines/microbiology , Starvation
SELECTION OF CITATIONS
SEARCH DETAIL
...