Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 09 20.
Article in English | MEDLINE | ID: mdl-37728328

ABSTRACT

The Maillard reaction, a chemical reaction between amino acids and sugars, is exploited to produce flavorful food ubiquitously, from the baking industry to our everyday lives. However, the Maillard reaction also occurs in all cells, from prokaryotes to eukaryotes, forming advanced glycation end-products (AGEs). AGEs are a heterogeneous group of compounds resulting from the irreversible reaction between biomolecules and α-dicarbonyls (α-DCs), including methylglyoxal (MGO), an unavoidable byproduct of anaerobic glycolysis and lipid peroxidation. We previously demonstrated that Caenorhabditis elegans mutants lacking the glod-4 glyoxalase enzyme displayed enhanced accumulation of α-DCs, reduced lifespan, increased neuronal damage, and touch hypersensitivity. Here, we demonstrate that glod-4 mutation increased food intake and identify that MGO-derived hydroimidazolone, MG-H1, is a mediator of the observed increase in food intake. RNAseq analysis in glod-4 knockdown worms identified upregulation of several neurotransmitters and feeding genes. Suppressor screening of the overfeeding phenotype identified the tdc-1-tyramine-tyra-2/ser-2 signaling as an essential pathway mediating AGE (MG-H1)-induced feeding in glod-4 mutants. We also identified the elt-3 GATA transcription factor as an essential upstream regulator for increased feeding upon accumulation of AGEs by partially controlling the expression of tdc-1 gene. Furthermore, the lack of either tdc-1 or tyra-2/ser-2 receptors suppresses the reduced lifespan and rescues neuronal damage observed in glod-4 mutants. Thus, in C. elegans, we identified an elt-3 regulated tyramine-dependent pathway mediating the toxic effects of MG-H1 AGE. Understanding this signaling pathway may help understand hedonistic overfeeding behavior observed due to modern AGE-rich diets.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Pyruvaldehyde/metabolism , Magnesium Oxide/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Signal Transduction , Tyramine/metabolism , Glycation End Products, Advanced/metabolism , Eating
2.
J Org Chem ; 86(17): 12436-12442, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34399579

ABSTRACT

Methods that functionalize the periphery of azacylic scaffolds have garnered increasing interest in recent years. Herein, we investigate the selectivity of a solid-state Norrish-Yang cyclization (NYC) and subsequent C-C cleavage/cross-coupling reaction of a strained cyclopropane-fused azacyclic system. Surprisingly, the NYC primarily furnished a single lactam constitutional and diastereo-isomer. The regioselectivity of the C-C cleavage of the α-hydroxy-ß-lactam moiety could be varied by altering the ligand set used in the coupling chemistry. Experimental and computational observations are discussed.


Subject(s)
beta-Lactams , Cyclization , Physical Phenomena , Stereoisomerism
3.
ACS Catal ; 10(5): 2929-2941, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-33569242

ABSTRACT

Saturated cyclic amines (aza-cycles) are ubiquitous structural motifs found in pharmaceuticals, agrochemicals, and bioactive natural products. Given their importance, methods that directly functionalize aza-cycles are in high demand. Herein, we disclose a fundamentally different approach to functionalizing cyclic amines which relies on C─C cleavage and attendant cross-coupling. The initial functionalization step is the generation of underexplored N-fused bicyclo α-hydroxy-ß-lactams under mild, visible light conditions using a Norrish-Yang process to affect α-functionalization of saturated cyclic amines. This approach is complementary to previous methods for the C─H functionalization of aza-cycles and provides unique access to various cross-coupling adducts. In the course of these studies, we have also uncovered an orthogonal, base-promoted opening of the N-fused bicyclo α-hydroxy-ß-lactams. Computational studies have provided insight into the origin of the complementary C─C cleavage processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...