Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Optica ; 8(5): 674-685, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34239949

ABSTRACT

Superresolution (SR) optical microscopy has allowed the investigation of many biological structures below the diffraction limit; however, most of the techniques are hampered by the need for fluorescent labels. Nonlinear label-free techniques such as second-harmonic generation (SHG) provide structurally specific contrast without the addition of exogenous labels, allowing observation of unperturbed biological systems. We use the photonic nanojet (PNJ) phenomena to achieve SR-SHG. A resolution of ∼ λ / 6 with respect to the fundamental wavelength, that is, a ∼ 2.3 -fold improvement over conventional or diffraction-limited SHG under the same imaging conditions is achieved. Crucially we find that the polarization properties of excitation are maintained in a PNJ. This is observed in experiment and simulations. This may have widespread implications to increase sensitivity by detection of polarization-resolved SHG by observing anisotropy in signals. These new, to the best of our knowledge, findings allowed us to visualize biological SHG-active structures such as collagen at an unprecedented and previously unresolvable spatial scale. Moreover, we demonstrate that the use of an array of self-assembled high-index spheres overcomes the issue of a limited field of view for such a method, allowing PNJ-assisted SR-SHG to be used over a large area. Dysregulation of collagen at the nanoscale occurs in many diseases and is an underlying cause in diseases such as lung fibrosis. Here we demonstrate that pSR-SHG allows unprecedented observation of changes at the nanoscale that are invisible by conventional diffraction-limited SHG imaging. The ability to nondestructively image SHG-active biological structures without labels at the nanoscale with a relatively simple optical method heralds the promise of a new tool to understand biological phenomena and drive drug discovery.

2.
Environ Sci Technol ; 55(6): 3645-3656, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33617249

ABSTRACT

Hydrologic and irrigation regimes mediate the timing of selenium (Se) mobilization to rivers, but the extent to which patterns in Se uptake and trophic transfer through recipient food webs reflect the temporal variation in Se delivery is unknown. We investigated Se mobilization, partitioning, and trophic transfer along approximately 60 river miles of the selenium-impaired segment of the Lower Gunnison River (Colorado, USA) during six sampling trips between June 2015 and October 2016. We found temporal patterns in Se partitioning and trophic transfer to be independent of those in dissolved Se concentrations and that the recipient food web sustained elevated Se concentrations from earlier periods of high Se mobilization. Using an ecosystem-scale Se accumulation model tailored to the Lower Gunnison River, we predicted that the endangered Razorback Sucker (Xyrauchen texanus) and Colorado Pikeminnow (Ptychocheilus lucius) achieve whole-body Se concentrations exceeding aquatic life protection criteria during periods of high runoff and irrigation activity (April-August) that coincide with susceptible phases of reproduction and early-life development. The results of this study challenge assumptions about Se trophodynamics in fast-flowing waters and introduce important considerations for the management of Se risks for biota in river ecosystems.


Subject(s)
Selenium , Water Pollutants, Chemical , Animals , Colorado , Ecosystem , Food Chain , Rivers , Selenium/analysis , Water Pollutants, Chemical/analysis
3.
PLoS One ; 15(1): e0226824, 2020.
Article in English | MEDLINE | ID: mdl-31929573

ABSTRACT

Mercury (Hg) and selenium (Se) are contaminants of concern for fish in the Upper Colorado River Basin (UCRB). We explored Hg and Se in fish tissues (2,324 individuals) collected over 50 years (1962-2011) from the UCRB. Samples include native and non-native fish collected from lotic waterbodies spanning 7 major tributaries to the Colorado River. There was little variation of total mercury (THg) in fish assemblages basin-wide and only 13% (272/1959) of individual fish samples exceeded the fish health benchmark (0.27 µg THg/g ww). Most THg exceedances were observed in the White-Yampa tributary whereas the San Juan had the lowest mean THg concentration. Risks associated with THg are species specific with exceedances dominated by Colorado Pikeminnow (mean = 0.38 and standard error ± 0.08 µg THg/g ww) and Roundtail Chub (0.24 ± 0.06 µg THg/g ww). For Se, 48% (827/1720) of all individuals exceeded the fish health benchmark (5.1 µg Se/g dw). The Gunnison river had the most individual exceedances of the Se benchmark (74%) whereas the Dirty Devil had the fewest. We identified that species of management concern accumulate THg and Se to levels above risk thresholds and that fishes of the White-Yampa (THg) and Gunnison (Se) rivers are at the greatest risk in the UCRB.


Subject(s)
Fishes , Mercury/analysis , Selenium/analysis , Animals , Environmental Monitoring , Fishes/classification , Linear Models , Molar/chemistry , Retrospective Studies , Rivers/chemistry , Southwestern United States , Tissue Distribution
4.
PLoS One ; 12(7): e0179498, 2017.
Article in English | MEDLINE | ID: mdl-28683083

ABSTRACT

Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.


Subject(s)
Conservation of Natural Resources , Lakes/analysis , Models, Statistical , Climate Change , Colorado , Computer Simulation , Ecosystem , Seasons , Temperature
5.
Glob Chang Biol ; 19(5): 1383-98, 2013 May.
Article in English | MEDLINE | ID: mdl-23505098

ABSTRACT

Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a ≥90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks.


Subject(s)
Climate Change , Ecosystem , Rivers , Trout/physiology , Animals , Bayes Theorem , Hot Temperature , Models, Theoretical , Population Dynamics , Seasons , Southwestern United States , Wyoming
SELECTION OF CITATIONS
SEARCH DETAIL
...