Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 899: 165246, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37419364

ABSTRACT

The effectiveness of nitrogen removal in wetlands relies heavily on the biological processes that control its removal. Here, we used δ15N and δ18O of nitrate (NO3-) to assess the presence and the dominance of transformation processes of nitrogen in two urban water treatment wetlands in Victoria, Australia over two rainfall events. Laboratory incubation experiments were undertaken in both light and dark to measure the isotopic fractionation factor of nitrogen assimilation (by periphyton and algae) and benthic denitrification (using bare sediment). Highest isotopic fractionations were observed for nitrogen assimilation by algae and periphyton in the light, 15ε = -14.6 to -25 ‰ while the 15ε = -1.5 ‰ in bare sediment, consistent with that of benthic denitrification. Transect water samplings of the wetlands showed different rainfall patterns (discrete versus continuous) affect the removal capability of the wetlands. During the discrete event sampling, the observed 15ε of NO3- (an average of 3.0 to 4.3 ‰) within the wetland falls between the experimental 15ε of benthic denitrification and assimilation; coinciding with the decrease in NO3- concentrations, suggesting that both denitrification and assimilation were important removal pathways. Depletion of δ15N-NO3- throughout the whole wetland system also suggested the influence of water column nitrification during this time. In contrast, during continuous rain events, no fractionation effect was observed within the wetland and was consistent with limited NO3- removal. The difference in fractionation factors within the wetland during different sampling conditions suggested that nitrate removal was highly likely limited by changes in overall nutrient inputs, residence time and water temperature which impeded biological uptake or removal. These highlight that consideration of sampling condition is crucial when assessing the efficacy of a wetland in removing nitrogen.


Subject(s)
Nitrates , Nitrogen , Nitrogen/analysis , Nitrates/analysis , Wetlands , Nitrogen Isotopes/analysis , Environmental Monitoring , Organic Chemicals , Victoria , Denitrification
2.
Sci Total Environ ; 666: 608-617, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30807951

ABSTRACT

Denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) are two competing nitrate reduction pathways that remove or recycle nitrogen, respectively. However, factors controlling the partitioning between these two pathways are manifold and our understanding of these factors is critical for the management of N loads in constructed wetlands. An important factor that controls DNRA in an aquatic ecosystem is the electron donor, commonly organic carbon (OC) or alternatively ferrous iron and sulfide. In this study, we investigated the role of natural organic carbon (NOC) and acetate at different OC/NO3- ratios and ferrous iron on the partitioning between DNF and DNRA using the 15N-tracer method in slurries from four constructed stormwater urban wetlands in Melbourne, Australia. The carbon and nitrate experiments revealed that DNF dominated at all OC/NO3- ratios. The higher DNF and DNRA rates observed after the addition of NOC indicates that nitrate reduction was enhanced more by NOC than acetate. Moreover, addition of NOC in slurries stimulated DNRA more than DNF. Interestingly, slurries amended with Fe2+ showed that Fe2+ had significant control on the balance between DNF and DNRA. From two out of four wetlands, a significant increase in DNRA rates (p < .05) at the cost of DNF in the presence of available Fe2+ suggests DNRA is coupled to Fe2+ oxidation. Rates of DNRA increased 1.5-3.5 times in the Fe2+ treatment compared to the control. Overall, our study provides direct evidence that DNRA is linked to Fe2+ oxidation in some wetland sediments and highlights the role of Fe2+ in controlling the partitioning between removal (DNF) and recycling (DNRA) of bioavailable N in stormwater urban constructed wetlands. In our study we also measured anammox and found that it was always <0.05% of total nitrate reduction in these sediments.

3.
Chemosphere ; 185: 673-680, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28728124

ABSTRACT

Synthesized ferrihydrite (Fh) with the dosages of 0.3, 0.6 and 0.9 cm thickness (labeled as Fh, 2Fh and 3Fh respectively, equivalent to 248-774 g/m2) were deployed to serve as the reactive capping layer covering the Ornamental Lake sediments, the Royal Botanic Garden of Melbourne. The sediments were exposed to an alternating regime of oxic/anoxic conditions using laboratory reactors for 45 days. Dynamics of dissolved oxygen (DO), pH, filterable reactive phosphorus (FRP), filterable ammonium (NH4+), nitrate and nitrite (NOx), total dissolved nitrogen (TDN) and dissolved iron (Fe) of overlying water were examined. After incubation, O2 and H2S profiles across the water-sediment interface were observed with microelectrodes. The element distributions in the upper sediments were tested as well. Results showed that DO and pH kept relatively stable during oxic period, while decreased significantly during anoxic period. Fh cappings decreased both DO and pH, and inhibited the release of FRP. No significant increments of FRP in overlying waters were observedduring anoxic period. Fh cappings prompted the releases of NH4+ and TDN, while inhibited that of NOx.NH4+increased while NOx decreased during anoxic period. Fe(II) and TFe increased only in 3Fh, especially during anoxic conditions. Fh cappings increased O2 and H2S concentrations across the water-sediment interfaces. TP and TN in the sediments decreased after capping, while TFe increased significantly. We concluded that 0.6 cm thickness of (496 g/m2) Fh capping could sequestrate P, even experiencing redox conditions.


Subject(s)
Environmental Restoration and Remediation/methods , Ferric Compounds/chemistry , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Wetlands , Eutrophication , Geologic Sediments , Iron , Lakes , Nitrogen/analysis , Oxidation-Reduction , Oxygen , Plants , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...