Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 29(2): e01848, 2019 03.
Article in English | MEDLINE | ID: mdl-30786092

ABSTRACT

Birds respond rapidly to changes in both habitat and climate conditions and thus are good indicators of the ecological effects of a changing climate, which may include warmer temperatures, changing habitat conditions, and increased frequency and magnitude of extreme events like drought. We investigated how a widespread tree mortality event concurrent with a severe drought influenced the avian community of the Sierra Nevada mountain range in California. We assessed and compared the separate effects of climate stresses and altered habitat conditions on the avian community and used this information to evaluate the changes that are likely to occur in the near future. We built tree mortality maps from freely available Landsat imagery with Google Earth Engine. We analyzed avian point counts from 2010 to 2016 in the southern Sierra Nevada, to model temperature, water deficit, and tree mortality effects on the abundances of 45 bird species, and then used these models to project abundances into the future based on three climate projections. A large portion of the avian community, 47%, had a positive relationship with temperature increase, compared to 20% that responded negatively. More species (36%) declined with drier conditions than increased (29%). More species declined in response to high tree mortality (36%) than increased (9%). A preponderance of species adapted to colder temperatures (higher elevation) had negative responses to high tree mortality and water deficit, but positive responses to increasing temperature. We projected the highest total bird abundances in the future under the warmest climate scenario that we considered, but habitat modification (e.g., tree mortality) and water deficit could offset the positive influence of temperature for many species. As other studies have shown, climate warming may lead to substantial but idiosyncratic effects on wildlife species that could result in community composition shifts. We conclude that future climate conditions may not have a universally negative effect on biodiversity in the Sierra Nevada, but probable vegetation changes and increased likelihood of extreme events such as drought should be incorporated into climate-smart forest and wildlife management decisions.


Subject(s)
Droughts , Trees , Animals , Birds , California , Climate Change , Nevada
2.
PLoS One ; 10(4): e0123778, 2015.
Article in English | MEDLINE | ID: mdl-25905920

ABSTRACT

Whether by design or default, single species management often serves as an umbrella for species with similar habitat requirements. In recent decades the focus of National Forest management in the Sierra Nevada of California has shifted towards increasing closed canopy mature forest conditions through the protection of areas occupied by the California Spotted Owl (Strix occidentalis occidentalis). To evaluate the implications of these habitat changes and the potential umbrella resulting from a system of owl reserves on the broader avian community, we estimated occupancy of birds inside and outside of Spotted Owl Home Range Core Areas in northeastern California. We used point count data in a multi-species hierarchical Bayesian model incorporating the detection history of 81 species over a two-year time period (2005-2006). A small set of vegetation cover and topography covariates were included in the model to account for broad differences in habitat conditions, as well as a term identifying whether or not a site was within a Core Area. Seventeen species had a negative Core Area effect, seven had a positive effect, and the rest were not significant. Estimated species richness was significantly different with 23.1 species per 100 m radius circle outside Core Areas and 21.7 inside Core Areas. The majority of the species negatively associated with Core Areas are tied to early successional and other disturbance-dependent habitats. Conservation and climate vulnerability rankings were mixed. On average we found higher scores (greater risk) for the species positively associated with Core Areas, but a larger number of species with the highest scores were negatively associated with Core Areas. We discuss the implications for managing the Sierra Nevada ecosystem and illustrate the role of monitoring broader suites of species in guiding management of large complex ecosystems.


Subject(s)
Conservation of Natural Resources , Strigiformes , Animals , California , Ecosystem
4.
J Environ Manage ; 81(4): 339-50, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16549235

ABSTRACT

Forest management planners require analytical tools to assess the effects of alternative strategies on the sometimes disparate benefits from forests such as timber production and wildlife habitat. We assessed the spatial patterns of alternative management strategies by linking two models that were developed for different purposes. We used a linear programming model (Spectrum) to optimize timber harvest schedules, then a simulation model (HARVEST) to project those schedules in a spatially explicit way and produce maps from which the spatial pattern of habitat could be calculated. We demonstrated the power of this approach by evaluating alternative plans developed for a national forest plan revision in Wisconsin, USA. The amount of forest interior habitat was inversely related to the amount of timber cut, and increased under the alternatives compared to the current plan. The amount of edge habitat was positively related to the amount of timber cut, and increased under all alternatives. The amount of mature northern hardwood interior and edge habitat increased for all alternatives, but mature pine habitat area varied. Mature age classes of all forest types increased, and young classes decreased under all alternatives. The average size of patches (defined by age class) generally decreased. These results are consistent with the design goals of each of the alternatives, but reveal that the spatial differences among the alternatives are modest. These complementary models are valuable for quantifying and comparing the spatial effects of alternative management strategies.


Subject(s)
Ecosystem , Forestry/methods , Models, Theoretical , Programming, Linear , Trees , Computer Simulation , Geography , Wisconsin
SELECTION OF CITATIONS
SEARCH DETAIL
...