Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-17294454

ABSTRACT

BACKGROUND: This study was conducted to evaluate the potential adverse effects of whole-body inhalation exposure of F0 and F1 parental animals from a 2-generation reproduction study of ethylbenzene on nervous system functional and/or morphologic end points in the F2 offspring from four groups of male and female Crl:CD (SD)IGS BR rats. METHODS: Thirty rats/sex/group for F0 and 25/sex/group for F1 were exposed to 0, 25, 100, and 500 ppm ethylbenzene for six hours daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure for the F0 and F1 females continued throughout mating and gestation through Gestation Day (GD) 20. On lactation days (LD) 1-4, the F0 and F1 females received no inhalation exposure, but instead were administered ethylbenzene in corn oil via oral gavage at dosages estimated to result in similar internal maternal exposure based upon PBPK modeling estimates (0, 26, 90, and 342 mg/kg/day, respectively, divided into three equal doses, approximately two hours apart). Inhalation exposure of the F0 and F1 females was reinitiated on LD 5 and continued through weaning on postnatal day (PND) 21. Survival, body weights, and physical landmarks were assessed in selected F2 offspring. Neurobehavioral development of one F2-generation treatment derived offspring/sex/litter was assessed in a functional observational battery (FOB; PND 4, 11, 22, 45, and 60), motor activity sessions (PND 13, 17, 21, and 61), acoustic startle testing (PND 20 and 60), a Biel water maze learning and memory task (initiated on PND 26 or 62), and in evaluations of whole-brain measurements and brain morphometric and histologic assessments (PND 21 and 72). RESULTS: There were no adverse effects on reproductive performance in either the F0 or F1 parental generations exposed to up to 500 ppm ethylbenzene [Faber et al. Birth Defects Res Part B 77:10-21, 2006]. In the current developmental neurotoxicity component, parental ethylbenzene exposure did not adversely affect offspring survival, clinical condition, body weight parameters, or acquisition of developmental landmarks of the F2-generation treatment derived offspring. There were no alterations in FOB parameters, motor activity counts, acoustic startle endpoints, or Biel water maze performance in offspring attributed to parental ethylbenzene exposure. A few isolated instances of statistically significant differences obtained in the treatment-derived groups occurred sporadically, and were attributed to unusual patterns of development and/or behavior in the concurrent control group. There were no exposure-related differences in any neuropathology parameters in the F2-generation treatment derived offspring. CONCLUSIONS: The no observed adverse effect level (NOAEL) for maternal reproductive toxicity, developmental toxicity, and developmental neurotoxicity in this study was considered to be 500 ppm/342 mg/kg/day ethylbenzene, the highest exposure level tested in the study.


Subject(s)
Benzene Derivatives/toxicity , Brain/drug effects , Fetus/drug effects , Inhalation Exposure , Animals , Brain/pathology , Female , Male , Maze Learning/drug effects , Motor Activity/drug effects , No-Observed-Adverse-Effect Level , Pregnancy , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects , Reproduction/drug effects
2.
Article in English | MEDLINE | ID: mdl-16342202

ABSTRACT

BACKGROUND: This study was conducted to evaluate the potential adverse effects of ethylbenzene (EB) on reproductive capability from whole-body inhalation exposure of F0 and F1 parental animals. METHODS: Four groups of Crl:CD(SD)IGS BR rats (30/sex/group for F0 and 25/sex/group for F1) were exposed to 0, 25, 100, and 500 ppm EB for 6 hr/day for at least 70 consecutive days before mating. Inhalation exposure for the F0 and F1 females continued throughout mating, gestation through gestation day (GD) 20, and lactation days (LD) 5-21. On LD 1-4, females received EB in corn oil via oral gavage at dose levels of 26, 90, and 342 mg/kg/day (divided into three equal doses, approximately 2 hr apart), as calculated from a physiologically-based pharmacokinetic (PBPK) model to provide similar maternal blood area-under-concentration (AUC) as provided by inhalation. Pups were weaned on postnatal day (PND) 21 and exposure of the F1 generation started on PND 22. Estimates of internal exposure were determined by measuring EB concentrations in blood collected from F1 dams (4/group) and their culled pups 1 hr after the last gavage dose on PND 4. On PND 22, blood was collected from these same F1 dams and their weanlings for EB analysis 1 hr after a 6-hr inhalation exposure. The remainder of the F2 generation was not directly exposed. RESULTS: EB exposure did not affect survival or clinical observations. Male rats in the 500 ppm group in both generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, ovarian follicle counts, reproductive organ weights, lengths of estrous cycle and gestation, live litter size, pup weights, developmental landmarks, and postnatal survival were unaffected. No adverse exposure-related macroscopic pathology was noted at any level. CONCLUSIONS: Increased liver weights were found in the animals exposed to 500 ppm. F1 maternal whole blood EB concentrations of 0.49, 3.51, or 18.28 mg/L were found 1 hr after administration of a composite oral dose of 26, 90, or 342 mg/kg/day, respectively, but no detectable EB was found in blood samples of their F2 PND 4 culled pups. F1 maternal mean whole blood EB levels 1 hr after a 6-hr inhalation exposure on postpartum day (PPD) 22 was 0.11 mg/L (25 ppm), 0.56 mg/L (100 ppm), and 11 mg/L (500 ppm). For the offspring exposed with their dams on PND 22, F2 pup blood EB concentrations ranged from 0.017-0.039 mg/L (25 ppm), 0.165-0.465 mg/L (100 ppm), and 8.82-15.74 mg/L (500 ppm). Because decreased weight gain in the 500 ppm males was transient and no histopathological changes were associated with the increased liver weights in the 500 ppm male and female groups, these changes were not considered adverse. Therefore, for parental systemic toxicity, 100 ppm was considered a NOEL and 500 ppm a NOAEL in this study. The 500 ppm exposure concentration was considered a NOAEL for F0 and F1 reproductive toxicity and offspring developmental endpoints.


Subject(s)
Benzene Derivatives/administration & dosage , Benzene Derivatives/adverse effects , Inhalation Exposure , Reproduction/drug effects , Administration, Oral , Animals , Benzene Derivatives/blood , Female , Lactation/drug effects , Organ Size/drug effects , Pregnancy , Rats , Reproduction/physiology , Sexual Behavior, Animal/drug effects , Spermatogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...