Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 11(3): 036013, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24810149

ABSTRACT

OBJECTIVE: Carbon nanotubes (CNTs) are attractive for use in peripheral nerve interfaces because of their unique combination of strength, flexibility, electrical conductivity and nanoscale surface texture. Here we investigated the growth of motor neurons on thin films of horizontally aligned CNTs (HACNTs). APPROACH: We cultured primary embryonic rat motor neurons on HACNTs and performed statistical analysis of the length and orientation of neurites. We next presented motor neurons with substrates of alternating stripes of HACNTs and SiO2. MAIN RESULTS: The neurons survived on HACNT substrates for up to eight days, which was the full duration of our experiments. Statistical analysis of the length and orientation of neurites indicated that the longest neurites on HACNTs tended to align with the CNT direction, although the average neurite length was similar between HACNTs and glass control substrates. We observed that when motor neurons were presented with alternating stripes of HACNTs and SiO2, the proportion of neurons on HACNTs increases over time, suggesting that neurons selectively migrate toward and adhere to the HACNT surface. SIGNIFICANCE: The behavior of motor neurons on CNTs has not been previously investigated, and we show that aligned CNTs could provide a viable interface material to motor neurons. Combined with emerging techniques to build complex hierarchical structures of CNTs, our results suggest that organised CNTs could be incorporated into nerve grafts that use physical and electrical cues to guide regenerating axons.


Subject(s)
Electrodes, Implanted , Membranes, Artificial , Molecular Imprinting/methods , Motor Neurons/cytology , Motor Neurons/physiology , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Animals , Cell Adhesion/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Cell Survival/physiology , Cells, Cultured , Equipment Design , Equipment Failure Analysis , Materials Testing , Rats
2.
J Mater Chem B ; 1(37): 4711-4718, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-32261153

ABSTRACT

We present the fabrication and mechanical properties of thin collagen networks self-assembled in a suspended configuration over micropost arrays. These collagen "canopies" were formed on arrays of microposts made of PDMS, silicon, and vertically aligned carbon nanotubes (CNT). We reversibly loaded the canopy to an in-plane stress of 32 MPa. We found that human dermal fibroblasts (HDFb) proliferate on the canopy substrates for up to 7 days. This versatile fabrication method for suspended extracellular matrix (ECM) films may enable the development of new assays to probe cell-ECM interactions, along with integration of microelectronic probes.

3.
Adv Mater ; 24(13): 1628-74, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22396318

ABSTRACT

Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas.


Subject(s)
Biocompatible Materials/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Animals , Anisotropy , Electric Conductivity , Humans , Surface Properties , Tissue Engineering/methods
4.
Biomaterials ; 32(10): 2614-24, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21239054

ABSTRACT

The cationic lipid GL67A is one of the more efficient non-viral gene transfer agents (GTAs) for the lungs, and is currently being evaluated in an extensive clinical trial programme for cystic fibrosis gene therapy. Despite conferring significant expression of vector-specific mRNA following transfection of differentiated human airway cells cultured on air liquid interfaces (ALI) cultures and nebulisation into sheep lung in vivo we were unable to detect robust levels of the standard reporter gene Firefly luciferase (FLuc). Recently a novel secreted luciferase isolated from Gaussia princeps (GLuc) has been described. Here, we show that (1) GLuc is a more sensitive reporter gene and offers significant advantages over the traditionally used FLuc in pre-clinical models for lung gene transfer that are difficult to transfect, (2) GL67A-mediated gene transfection leads to significant production of recombinant protein in these models, (3) promoter activity in ALI cultures mimics published in vivo data and these cultures may, therefore, be suitable to characterise promoter activity in a human ex vivo airway model and (4) detection of GLuc in large animal broncho-alveolar lavage fluid and serum facilitates assessment of duration of gene expression after gene transfer to the lungs. In summary, we have shown here that GLuc is a sensitive reporter gene and is particularly useful for monitoring gene transfer in difficult to transfect models of the airway and lung. This has allowed us to validate that GL67A, which is currently in clinical use, can generate significant amounts of recombinant protein in fully differentiated human air liquid interface cultures and the ovine lung in vivo.


Subject(s)
Gene Transfer Techniques , Genes, Reporter/genetics , Luciferases/genetics , Luciferases/metabolism , Lung/metabolism , Animals , Bronchoalveolar Lavage Fluid , Cells, Cultured , Electricity , Gene Expression Profiling , Gene Expression Regulation , HEK293 Cells , Humans , Lipids/chemistry , Luciferases/blood , Mice , Polyethyleneimine/chemistry , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sheep , Time Factors , Transfection , Viruses/genetics , Whole Body Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...