Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Front Plant Sci ; 15: 1341781, 2024.
Article in English | MEDLINE | ID: mdl-38525153

ABSTRACT

Upon acquisition of persistent circulative viruses such as poleroviruses, the virus particles transcytose through membrane barriers of aphids at the midgut and salivary glands via hemolymph. Such intricate interactions can influence aphid behavior and fitness and induce associated gene expression in viruliferous aphids. Differential gene expression can be evaluated by omics approaches such as transcriptomics. Previously conducted aphid transcriptome studies used only one host species as the source of virus inoculum. Viruses typically have alternate hosts. Hence, it is not clear how alternate hosts infected with the same virus isolate alter gene expression in viruliferous vectors. To address the question, this study conducted a transcriptome analysis of viruliferous aphids that acquired the virus from different host species. A polerovirus, cotton leafroll dwarf virus (CLRDV), which induced gene expression in the cotton aphid, Aphis gossypii Glover, was assessed using four alternate hosts, viz., cotton, hibiscus, okra, and prickly sida. Among a total of 2,942 differentially expressed genes (DEGs), 750, 310, 1,193, and 689 genes were identified in A. gossypii that acquired CLRDV from infected cotton, hibiscus, okra, and prickly sida, respectively, compared with non-viruliferous aphids that developed on non-infected hosts. A higher proportion of aphid genes were overexpressed than underexpressed following CLRDV acquisition from cotton, hibiscus, and prickly sida. In contrast, more aphid genes were underexpressed than overexpressed following CLRDV acquisition from okra plants. Only four common DEGs (heat shock protein, juvenile hormone acid O-methyltransferase, and two unannotated genes) were identified among viruliferous aphids from four alternate hosts. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that the acquisition of CLRDV induced DEGs in aphids associated with virus infection, signal transduction, immune systems, and fitness. However, these induced changes were not consistent across four alternate hosts. These data indicate that alternate hosts could differentially influence gene expression in aphids and presumably aphid behavior and fitness despite being infected with the same virus isolate.

2.
Insects ; 14(7)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37504645

ABSTRACT

Cotton leafroll dwarf virus (CLRDV) is an emerging aphid-borne pathogen infecting cotton, Gossypium hirsutum L., in the southern United States (U.S.). The cotton aphid, Aphis gossypii Glover, infests cotton annually and is the only known vector to transmit CLRDV to cotton. Seven other species have been reported to feed on, but not often infest, cotton: Protaphis middletonii Thomas, Aphis craccivora Koch, Aphis fabae Scopoli, Macrosiphum euphorbiae Thomas, Myzus persicae Sulzer, Rhopalosiphum rufiabdominale Sasaki, and Smynthurodes betae Westwood. These seven have not been studied in cotton, but due to their potential epidemiological importance, an understanding of the intra- and inter-annual variations of these species is needed. In 2020 and 2021, aphids were monitored from North Carolina to Texas using pan traps around cotton fields. All of the species known to infest cotton, excluding A. fabae, were detected in this study. Protaphis middletonii and A. gossypii were the most abundant species identified. The five other species of aphids captured were consistently low throughout the study and, with the exception of R. rufiabdominale, were not detected at all locations. The abundance, distribution, and seasonal dynamics of cotton-infesting aphids across the southern U.S. are discussed.

3.
Mol Plant Pathol ; 24(6): 513-526, 2023 06.
Article in English | MEDLINE | ID: mdl-37038256

ABSTRACT

TAXONOMY: Cotton leafroll dwarf virus (CLRDV) is a member of the genus Polerovirus, family Solemoviridae. Geographical Distribution: CLRDV is present in most cotton-producing regions worldwide, prominently in North and South America. PHYSICAL PROPERTIES: The virion is a nonenveloped icosahedron with T = 3 icosahedral lattice symmetry that has a diameter of 26-34 nm and comprises 180 molecules of the capsid protein. The CsCl buoyant density of the virion is 1.39-1.42 g/cm3 and S20w is 115-127S. Genome: CLRDV shares genomic features with other poleroviruses; its genome consists of monopartite, single-stranded, positive-sense RNA, is approximately 5.7-5.8 kb in length, and is composed of seven open reading frames (ORFs) with an intergenic region between ORF2 and ORF3a. TRANSMISSION: CLRDV is transmitted efficiently by the cotton aphid (Aphis gossypii Glover) in a circulative and nonpropagative manner. Host: CLRDV has a limited host range. Cotton is the primary host, and it has also been detected in different weeds in and around commercial cotton fields in Georgia, USA. SYMPTOMS: Cotton plants infected early in the growth stage exhibit reddening or bronzing of foliage, maroon stems and petioles, and drooping. Plants infected in later growth stages exhibit intense green foliage with leaf rugosity, moderate to severe stunting, shortened internodes, and increased boll shedding/abortion, resulting in poor boll retention. These symptoms are variable and are probably influenced by the time of infection, plant growth stage, varieties, soil health, and geographical location. CLRDV is also often detected in symptomless plants. CONTROL: Vector management with the application of chemical insecticides is ineffective. Some host plant varieties grown in South America are resistant, but all varieties grown in the United States are susceptible. Integrated disease management strategies, including weed management and removal of volunteer stalks, could reduce the abundance of virus inoculum in the field.


Subject(s)
Gossypium , Luteoviridae , Plant Diseases , Plant Diseases/virology , Gossypium/virology , Aphids/virology , Luteoviridae/chemistry , Luteoviridae/genetics , Luteoviridae/physiology
4.
Insects ; 14(3)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36975947

ABSTRACT

After resistance is first detected, continued resistance monitoring can inform decisions on how to effectively manage resistant populations. We monitored for resistance to Cry1Ac (2018 and 2019) and Cry2Ab2 (2019) from southeastern USA populations of Helicoverpa zea. We collected larvae from various plant hosts, sib-mated the adults, and tested neonates using diet-overlay bioassays and compared them to susceptible populations for resistance estimates. We also compared LC50 values with larval survival, weight and larval inhibition at the highest dose tested using regression, and found that LC50 values were negatively correlated with survival for both proteins. Finally, we compared resistance rations between Cry1Ac and Cry2Ab2 during 2019. Some populations were resistant to Cry1Ac, and most were resistant to CryAb2; Cry1Ac resistance ratios were lower than Cry2Ab2 during 2019. Survival was positively correlated with larval weight inhibition for Cry2Ab. This contrasts with other studies in both the mid-southern and southeastern USA, where resistance to Cry1Ac, Cry1A.105, and Cry2Ab2 increased over time and was found in a majority of populations. This indicates that cotton expressing Cry proteins in the southeastern USA was at variable risk for damage in this region.

5.
Viruses ; 14(10)2022 10 13.
Article in English | MEDLINE | ID: mdl-36298804

ABSTRACT

The identification of alternate hosts that can act as virus inoculum sources and vector reservoirs in the landscape is critical to understanding virus epidemics. Cotton leafroll dwarf virus (CLRDV) is a serious pathogen in cotton production and is transmitted by the cotton/melon aphid, Aphis gossypii, in a persistent, circulative, and non-propagative manner. CLRDV was first reported in the United States in Alabama in 2017, and thereafter in several cotton-producing states. CLRDV has since established itself in the southeastern United States. The role of alternate hosts in CLRDV establishment is not clear. Fourteen common plant species in the landscape, including crops, weeds, and ornamentals (cotton, hollyhock, marshmallow, country mallow, abutilon, arrowleaf sida, okra, hibiscus, squash, chickpea, evening primrose, henbit, Palmer amaranth, and prickly sida) were tested as potential alternate hosts of CLRDV along with an experimental host (Nicotiana benthamiana) via aphid-mediated transmission assays. CLRDV was detected following inoculation in hibiscus, okra, N. benthamiana, Palmer amaranth, and prickly sida by RT-PCR, but not in the others. CLRDV accumulation determined by RT-qPCR was the highest in N. benthamiana compared with cotton and other hosts. However, aphids feeding on CLRDV-infected prickly sida, hibiscus, and okra alone were able to acquire CLRDV and back-transmit it to non-infected cotton seedlings. Additionally, some of the alternate CLRDV hosts supported aphid development on par with cotton. However, in a few instances, aphid fitness was reduced when compared with cotton. Overall, this study demonstrated that plant hosts in the agricultural landscape can serve as CLRDV inoculum sources and as aphid reservoirs and could possibly play a role in the reoccurring epidemics of CLRDV in the southeastern United States.


Subject(s)
Aphids , Luteoviridae , Animals , United States , Prospective Studies , Luteoviridae/genetics , Nicotiana , Gossypium
6.
JAMA Netw Open ; 5(8): e2226436, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35960519

ABSTRACT

Importance: Infection with SARS-CoV-2, which causes COVID-19, is associated with adverse maternal outcomes. While it is known that severity of COVID-19 varies by viral strain, the extent to which this variation is reflected in adverse maternal outcomes, including nonpulmonary maternal outcomes, is not well characterized. Objective: To evaluate the associations of SARS-CoV-2 infection with severe maternal morbidities (SMM) in pregnant patients delivering during 4 pandemic periods characterized by predominant viral strains. Design, Setting, and Participants: This retrospective cohort study included patients delivering in a multicenter, geographically diverse US health system between March 2020 and January 2022. Individuals with SARS-CoV-2 infection were propensity-matched with as many as 4 individuals without evidence of infection based on demographic and clinical variables during 4 time periods based on the dominant strain of SARS-CoV-2: March to December 2020 (wild type); January to June 2021 (Alpha [B.1.1.7]); July to November 2021 (Delta [B.1.617.2]); and December 2021 to January 2022 (Omicron [B.1.1.529]). Data were analyzed from October 2021 to June 2022. Exposures: Positive SARS-CoV-2 nucleic acid amplification test result during the delivery encounter. Main Outcomes and Measures: The primary outcome was any SMM event, as defined by the US Centers for Disease Control and Prevention, during hospitalization for delivery. Secondary outcomes were number of SMM, respiratory SMM, nonrespiratory SMM, and nontransfusion SMM events. Results: Over all time periods, there were 3129 patients with SARS-CoV-2, with a median (IQR) age of 29.1 (24.6-33.2) years. They were propensity matched with a total of 12 504 patients without SARS-CoV-2, with a median (IQR) age of 29.2 (24.7-33.2) years. Patients with SARS-CoV-2 infection had significantly higher rates of SMM events than those without in all time periods, except during Omicron. While the risk of any SMM associated with SARS-CoV-2 infection was increased for the wild-type strain (odds ratio [OR], 2.74 [95% CI, 1.85-4.03]) and Alpha variant (OR, 2.57 [95% CI, 1.69-4.01]), the risk during the Delta period was higher (OR, 7.69 [95% CI, 5.19-11.54]; P for trend < .001). The findings were similar for respiratory complications, nonrespiratory complications, and nontransfusion outcomes. For example, the risk of nonrespiratory SMM events for patients with vs without SARS-CoV-2 infection were similar for the wild-type strain (OR, 2.16 [95% CI, 1.40-3.27]) and Alpha variant (OR, 1.96 [95% CI, 1.20-3.12]), highest for the Delta variant (OR, 4.65 [95% CI, 2.97-7.29]), and not significantly higher in the Omicron period (OR, 1.21 [95% CI, 0.67-2.08]; P for trend < .001). Conclusions and Relevance: This cohort study found that the SARS-CoV-2 Delta variant was associated with higher rates of SMM events compared with other strains. Given the potential of new strains, these findings underscore the importance of preventive measures.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Adult , COVID-19/epidemiology , Cohort Studies , Female , Humans , Morbidity , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Retrospective Studies , SARS-CoV-2
7.
Insects ; 13(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055931

ABSTRACT

Tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), is an economically damaging pest in cotton production systems across the southern United States. We systematically scouted 120 commercial cotton fields across five southeastern states during susceptible growth stages in 2019 and 2020 to investigate sampling optimization and the effect of interface crop and landscape composition on L. lineolaris abundance. Variance component analysis determined field and within-field spatial scales, compared with agricultural district and state, accounted for more variation in L. lineolaris density using sweep net and drop cloth sampling. This result highlights the importance of field-level scouting efforts. Using within-field samples, a fixed-precision sampling plan determined 8 and 23 sampling units were needed to determine L. lineolaris population estimates with 0.25 precision for sweep net (100 sweeps per unit) and drop cloth (1.5 row-m per unit) sampling, respectively. A spatial Bayesian hierarchical model was developed to determine local landscape (<0.5 km from field edges) effects on L. lineolaris in cotton. The proportion of agricultural area and double-crop wheat and soybeans were positively associated with L. lineolaris density, and fields with more contiguous cotton areas negatively predicted L. lineolaris populations. These results will improve L. lineolaris monitoring programs and treatment management decisions in southeastern USA cotton.

8.
Front Plant Sci ; 12: 734386, 2021.
Article in English | MEDLINE | ID: mdl-34659302

ABSTRACT

Cotton leafroll dwarf disease (CLRDD) caused by cotton leafroll dwarf virus (CLRDV) is an emerging threat to cotton production in the United States. The disease was first reported in Alabama in 2017 and subsequently has been reported in 10 other cotton producing states in the United States, including Georgia. A field study was conducted at field sites near Tifton, Georgia in 2019 and 2020 to evaluate leaf gas exchange, chlorophyll fluorescence, and leaf temperature responses for a symptomatic cultivar (diseased plants observed at regular frequency) at multiple stages of disease progression and for asymptomatic cultivars (0% disease incidence observed). Disease-induced reductions in net photosynthetic rate (A n, decreased by 63-101%), stomatal conductance (g s, decreased by 65-99%), and efficiency of the thylakoid reactions (32-92% decline in primary photochemistry) were observed, whereas leaf temperature significantly increased by 0.5-3.8°C at advanced stages of the disease. Net photosynthesis was substantially more sensitive to disease-induced declines in g s than the thylakoid reactions. Symptomatic plants with more advanced disease stages remained stunted throughout the growing season, and yield was reduced by 99% by CLRDD due to reductions in boll number per plant and declines in boll mass resulting from fewer seeds per boll. Asymptomatic cultivars exhibited more conservative gas exchange responses than apparently healthy plants of the symptomatic cultivar but were less productive. Overall, it is concluded that CLRDV limits stomatal conductance and photosynthetic activity of individual leaves, causing substantial declines in productivity for individual plants. Future studies should evaluate the physiological contributors to genotypic variation in disease tolerance under controlled conditions.

9.
PLoS One ; 16(7): e0252523, 2021.
Article in English | MEDLINE | ID: mdl-34232966

ABSTRACT

Cotton leafroll dwarf virus (CLRDV) is an emerging virus in cotton production in Georgia and several other Southeastern states in the USA. To better understand the genetic diversity of the virus population, the near complete genome sequences of six isolates from Georgia and one from Alabama were determined. The isolates sequenced were 5,866 nucleotides with seven open reading frames (ORFs). The isolates from Georgia were >94% identical with other isolates from the USA and South America. In the silencing suppressor protein (P0), at amino acid position 72, the isolates from Georgia and Alabama had a valine (V), similar to resistant-breaking 'atypical' genotypes in South America, while the Texas isolate had isoleucine (I), similar to the more aggressive 'typical' genotypes of CLRDV. At position 120, arginine (R) is unique to Georgia and China isolates, but absent in Alabama, Texas and South American isolates. Ten potential recombinant events were detected in the isolates sequenced. An increased understanding of CLRDV population structure and genetic diversity will help develop management strategies for CLRDV in the USA cotton belt.


Subject(s)
Genome, Viral/genetics , Genotype , Luteoviridae/genetics , Recombination, Genetic , Base Sequence , Genomics , Luteoviridae/physiology , United States
10.
J Econ Entomol ; 114(2): 747-756, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33615386

ABSTRACT

Thresholds for Helicoverpa zea (Boddie) in cotton Gossypium hirsutum L. have been understudied since the widespread adoption of Bt cotton in the United States. Our study was possible due to the widespread presence of H. zea populations with Cry-toxin resistance. We initiated progressive spray timing experiments using three Bt cotton brands (Deltapine, Stoneville, and Phytogen) widely planted across the U.S. Cotton Belt expressing pyramided toxins in the Cry1A, Cry2, and Vip3Aa19 families. We timed foliar insecticide treatments based on week of bloom to manipulate H. zea populations in tandem with crop development during 2017 and 2018. We hypothesized that non-Bt cotton, cotton expressing Cry toxins alone, and cotton expressing Cry and Vip3Aa19 toxins would respond differently to H. zea feeding. We calculated economic injury levels to support the development of economic thresholds from significant responses. Pressure from H. zea was high during both years. Squares and bolls damaged by H. zea had the strongest negative yield associations, followed by larval number on squares. There were fewer yield associations with larval number on bolls and with number of H. zea eggs on the plant. Larval population levels were very low on varieties expressing Vip3Aa19. Yield response varied across experiments and varieties, suggesting that it is difficult to pinpoint precise economic injury levels. Nonetheless, our results generally suggest that current economic thresholds for H. zea in cotton are too high. Economic injury levels from comparisons between non-Bt varieties and those expressing only Cry toxins could inform future thresholds once H. zea evolves resistance to Vip3Aa19.


Subject(s)
Bacillus thuringiensis , Gossypium , Insecticide Resistance , Moths , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Endotoxins , Hemolysin Proteins/genetics , Moths/genetics , Plants, Genetically Modified
11.
Insects ; 11(11)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238485

ABSTRACT

The whitefly, Bemisia tabaci, has developed resistance to many insecticides, renewing interest in the biological control of this global pest. Generalist predators might contribute to whitefly suppression if they commonly occur in infested fields and generally complement rather than interfere with specialized natural enemies. Here, we review literature from the last 20 years, across US cropping systems, which considers the impacts of generalist predators on B. tabaci. Laboratory feeding trials and molecular gut content analysis suggest that at least 30 different generalist predator species willingly and/or regularly feed on these whiteflies. Nine of these predators appear to be particularly impactful, and a higher abundance of a few of these predator species has been shown to correlate with greater B. tabaci predation in the field. Predator species often occupy complementary feeding niches, which would be expected to strengthen biocontrol, although intraguild predation is also common and might be disruptive. Overall, our review suggests that a bio-diverse community of generalist predators commonly attacks B. tabaci, with the potential to exert substantial control in the field. The key challenge will be to develop reduced-spray plans so that generalist predators, and other more specialized natural enemies, are abundant enough that their biocontrol potential is realized.

12.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32816986

ABSTRACT

Cotton leafroll dwarf disease (CLRDD), caused by the aphid-borne Cotton leafroll dwarf virus (CLRDV; genus, Polerovirus; family, Luteoviridae), has been recently reported from the major cotton-growing regions of the United States. Here, we present the nearly complete genome sequence of a CLRDV isolate from cotton in Georgia.

13.
Pest Manag Sci ; 76(12): 4018-4028, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32520443

ABSTRACT

BACKGROUND: Thrips (order Thysanoptera) infestations of cotton seedlings result in plant injury, increasing the detrimental consequences of other challenges to production agriculture, such as abiotic stress or infestation by other pests. Using Frankliniella fusca as a thrips species of focus, we empirically developed a composite model of thrips phenology and cotton seedling susceptibility to predict site-specific infestation risk so that monitoring and other resources can be allocated efficiently, to optimize the timing of thrips control measures to maximize effectiveness, and to inform stakeholders about the dynamics of thrips infestation and cotton seedling injury at a time when thrips are evolving resistance to commonly-used pesticides. RESULTS: A mixture distribution model of thrips infestation potential, fit to data describing F. fusca adult dispersal in time, proved best for predicting infestations of F. fusca on cotton seedlings. Thrips generations occurring each year as a function of weather are represented as a probability distribution. A model of cotton seedling growth was also developed to predict susceptibility as a function of weather. Combining these two models resulted in a model of seedling injury, which was validated and developed for implementation as a software tool. CONCLUSIONS: Experimental validation of the implemented model demonstrated the utility of its output in predicting infestation risk. Successful implementation and use of the software tool derived from this model was enabled by close cooperation with university extension personnel, agricultural consultants, and growers, underscoring the importance of stakeholder and expert input to the success of applied analytical research. © 2020 Society of Chemical Industry.


Subject(s)
Thysanoptera , Animals , Gossypium , Seedlings , Nicotiana , United States
14.
Pest Manag Sci ; 76(12): 3935-3944, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32506787

ABSTRACT

BACKGROUND: Economically damaging infestations of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), have become more frequent in Virginia and North Carolina cotton since 2013 and 2010, respectively. Foliar insecticide use has increased dramatically in response. Efficacy data (LC50 ) are needed to evaluate L. lineolaris susceptibility and resistance levels (RR50 ) to commonly used and recommended insecticides for managing this pest in the southeastern USA. RESULTS: Elevated resistance levels to acephate and bifenthrin were measured in L. lineolaris populations collected from wild and cultivated hosts in Virginia, North Carolina and northern Alabama when compared to a susceptible laboratory population. High levels of bifenthrin resistance were observed in 2018 and 2019. Mixed-function oxidase and esterase (EST) inhibitors, piperonyl butoxide and S,S,S-Tributyl phosphotrithioate, respectively, had a synergistic effect on bifenthrin with resistant populations of L. lineolaris. Bifenthrin-resistant L. lineolaris populations expressed elevated levels of cytochrome P450 (CYP450 ) monooxygenase and general EST activity. Results suggest that insecticide resistance is present in some locations and that CYP450 and EST activity in L. lineolaris contribute to pyrethroid resistance in the southeastern USA. CONCLUSIONS: Results can serve as a baseline for continued monitoring of L. lineolaris insecticide resistance and inform insecticide resistance management strategies that help southeastern USA cotton producers to minimize inputs and slow resistance development. © 2020 Society of Chemical Industry.


Subject(s)
Hemiptera , Heteroptera , Insecticides , Alabama , Animals , Insecticide Resistance , Insecticides/pharmacology , North Carolina
15.
J Econ Entomol ; 112(1): 181-187, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30321379

ABSTRACT

Thrips are early-season pests of cotton and can cause yield and stand losses if not managed. Strip tillage into a winter cover crop, use of a neonicotinoid seed treatment, and foliar insecticide applications are all reliable pest management tactics, but how these methods interact with each other in a thrip-cotton agroecosystem needs to be further understood. A 2-yr field study was conducted to compare thrip counts and thrip-induced plant injury as a function of tillage practice (conventional vs strip tillage with heavy rolled rye), thiamethoxam seed treatment, and foliar insecticide application for managing thrips in cotton. Adult and nymph density, seedling biomass, true leaf formation, stand count, and lint yield were assessed. Results indicate that heavy rolled rye was effective for mitigating thrips on seedling cotton. On conventionally tilled fields, the neonicotinoid seed treatment and a foliar insecticide application were necessary for maximizing yield. Spinetoram was more efficacious than either acephate or cyantraniliprole for management of immature thrips; however, there were no yield effects attributed to foliar insecticide application. These data suggest that growers can mitigate early-season thrips using both cultural and chemically based management tactics.


Subject(s)
Agriculture/methods , Insect Control/methods , Insecticides , Thysanoptera , Animals , Fungicides, Industrial , Gossypium/growth & development , Neonicotinoids , Secale
16.
Adv Orthop ; 2018: 4791214, 2018.
Article in English | MEDLINE | ID: mdl-30420922

ABSTRACT

BACKGROUND: This study aims to evaluate outcomes for warfarinised hip fracture patients and compare them with a matched nonwarfarinised group, before and after the introduction of national hip fracture guidelines in the United Kingdom. METHODS: A retrospective cohort study of 1743 hip fracture patients was undertaken. All patients admitted taking warfarin were identified. These patients were then matched to nonwarfarinised patients using nearest neighbour propensity score matching, accounting for age, sex, hip fracture type, and Nottingham Hip Fracture Score. A pre-guideline group (no standardised warfarin reversal regimen) and a post-guideline group (standardised regimen) were identified. Outcomes assessed included time to INR less than 1.7, time to theatre, length of stay, and 30-day and 1-year mortality. RESULTS: Forty-six warfarinised hip fracture patients were admitted in the pre-guideline group (mean age 80.5, F:M 3:1) and 48 in the post-guideline group (mean age 81.2 years, F:M 3:1). Post-guideline patients were reversed to a safe operative INR level within 18 hours of admission, decreasing the time to first dose vitamin K (p<0.001). 70% of warfarinised patients were operated upon within 36 hours, compared to 19.6% with no regimen (p<0.05). After anticoagulation reversal protocol, thirty-day mortality decreased from 15.2% to 8.3% and 1-year mortality from 43.5% to 33% for warfarinised patients, which is comparable to nonwarfarinised matched patients. There was no significant change in the length of stay pre- and post-guideline for both groups of patients. CONCLUSIONS: Proactive anticoagulant management and expedient surgery reduces morbidity and mortality when managing this surgically challenging subset of hip fracture patients.

17.
J Econ Entomol ; 111(4): 1824-1833, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29668958

ABSTRACT

Evidence of practical resistance of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) to Bt cotton in the United States is debatable, supported with occasional reports of boll damage in the field. Our objective was to provide both empirical and long-term observational evidence of practical resistance by linking both in-season and end-of-season measurements of H. zea damage to pyramided Bt cotton bolls and to provide Cry1Ac diet-based bioassay data in support of these damage estimates. In-season boll damage from H. zea was highly correlated to end-of-season damaged bolls. Across North Carolina, Bt cotton fields with end-of-season bolls damaged by H. zea increased during 2016 compared to previous years. Elevated damage was coupled with an increase in field sprays targeting H. zea during 2016, but not related to an increase in H. zea abundance. Bioassay data indicated that there was a range of Cry1Ac susceptibility across the southeastern United States. Given the range of susceptibility to Cry1Ac across the southeastern United States, it is probable that resistant populations are common. Since H. zea is resistant to cotton expressing pyramided Cry toxins, the adoption of new cotton varieties expressing Vip3Aa will be rapid. Efforts should be made to delay resistance of H. zea to the Vip3Aa toxin to avoid foliar insecticide use.


Subject(s)
Hemolysin Proteins , Moths , Animals , Bacterial Proteins , Endotoxins , Gossypium , Insecticide Resistance , North Carolina , Plants, Genetically Modified , Zea mays
18.
J Econ Entomol ; 111(2): 892-898, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29506223

ABSTRACT

Traditional identification of thrips species based on morphology is difficult, laborious, and especially challenging for immature thrips. To support monitoring and management efforts of thrips as consistent and widespread pests of cotton (Gossypium hirsutum L.), a probe-based quantitative PCR (qPCR) assay with crude DNA extraction was developed to allow efficient and specific identification of the primary species of thrips infesting cotton. The assay was applied to identify over 5,000 specimens of thrips (including 3,366 immatures) collected on cotton seedlings from Alabama, Georgia, North Carolina, South Carolina, and Virginia in 2016. One half of all adult samples were examined by morphological identification, which provided a statistically equivalent species composition as the qPCR method. Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) was the dominant species across all the locations (76.8-94.3% of adults and 81.6-98.0% of immatures), followed by Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in Georgia, North Carolina, and Virginia (4.6-19% of adults and 1.7-17.3% of immatures) or Frankliniella tritici (Fitch) (Thysanoptera: Thripidae) in South Carolina (10.8% of adults and 7.8% of immatures). Thrips tabaci (Lindeman) (Thysanoptera: Thripidae) and Neohydatothrips variabilis (Beach) (Thysanoptera: Thripidae) were occasionally found among adults but were rarely present among immature thrips. These five species of thrips represented 98.2-100% of samples collected across the Southeast. The qPCR assay was demonstrated to be a valuable tool for large-scale monitoring of species composition of thrips at different life stages in cotton. The tool will contribute to a better understanding of thrips population structure in cotton and could assist with development and application of improved management strategies.


Subject(s)
Food Chain , Gossypium , Herbivory , Real-Time Polymerase Chain Reaction/methods , Thysanoptera/classification , Animals , DNA, Intergenic/analysis , Electron Transport Complex IV/analysis , Gossypium/physiology , Insect Proteins/analysis , Larva/classification , Larva/genetics , Larva/growth & development , Southeastern United States , Thysanoptera/anatomy & histology , Thysanoptera/genetics , Thysanoptera/growth & development
19.
Environ Entomol ; 46(6): 1292-1298, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29028992

ABSTRACT

Since 2014, populations of the kudzu bug, Megacopta cribraria (F.) (Hemiptera: Plataspidae), have declined in the southeastern United States and seldom require treatment. This decline follows the discovery of Paratelenomus saccharalis (Dodd; Hymenoptera: Platygastridae), a non-native egg parasitoid. The objective of this project was to observe the temporal and spatial dynamics of P. saccharalis parasitism of kudzu bug egg masses in commercial soybean fields. Four fields were sampled weekly for kudzu bugs and egg masses at a density of one sample per 0.6 ha. Sampling commenced when soybean reached the R2 maturity stage and continued until no more egg masses were present. Responses including kudzu bugs, egg masses, and parasitism rates were analyzed using ANOVA, Spatial Analysis by Distance Indices (SADIE), and SaTScan spatial analysis software. Egg masses were collected from the field, held in the lab and monitored for emergence of kudzu bug nymphs or P. saccharalis. Kudzu bug populations were generally lower than previously reported in the literature and spatial aggregation was not consistently observed. Egg parasitism was first detected in early July and increased to nearly 40% in mid-August. Significant spatial patterns in parasitism were observed with spatio-temporal clusters being loosely associated with clusters of egg masses. There were no significant differences in parasitism rates between field margins and interiors, suggesting that P. saccharalis is an effective parasitoid of kudzu bug egg masses on a whole-field scale.


Subject(s)
Heteroptera/physiology , Heteroptera/parasitology , Host-Parasite Interactions , Hymenoptera/physiology , Pest Control, Biological , Animals , Georgia , Heteroptera/growth & development , Nymph/growth & development , Nymph/parasitology , Nymph/physiology , Seasons , Glycine max/growth & development , Spatial Analysis
20.
J Econ Entomol ; 110(4): 1563-1575, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28475718

ABSTRACT

A 2-yr study in cotton (Gossypium hirsutum L.) was conducted to determine the abundance and species composition of thrips (Thysanoptera: Thripidae) on different plant parts throughout the season in Alabama, Georgia, North Carolina, South Carolina, and Virginia. Plant parts sampled included seedlings, terminals with two expanded leaves, leaves from the upper, middle, and lower sections of the canopy, white flowers, and medium-sized bolls. Adult thrips were significantly more abundant on seedlings and flowers in 2014, and on flowers followed by seedlings and leaves from the middle canopy in 2015. Immature thrips were significantly more abundant on seedlings, followed by flowers in 2014, and on seedlings followed by leaves from the lower canopy and flowers in 2015. Across locations and plant parts, thrips consisted of Frankliniella tritici (Fitch) (46.8%), Frankliniella fusca Hinds (23.5%), Frankliniella occidentalis (Pergande) (17.1%), Neohydatothrips variabilis (Beach) (7.4%), Thrips tabaci (Lindeman) (1.8%), and other species (3.4%). Frankliniella fusca represented 86.7% of all thrips on seedlings, while F. tritici was more abundant on terminals (51.6%), squares (57.5%), and flowers (75.1%). Across all leaf positions, F. fusca was the most abundant species (28.8%), followed by F. tritici (19.2%), N. variabilis (18.8%), F. occidentalis (12.9%), and T. tabaci (5.2%), as well as other species (15.0%). As neonicotinoid insecticides remain a primary tool to manage seedling infestations of F. fusca, our data indicate that mid- to late-season applications of neonicotinoid insecticides targeting other insect pests will intensify selection pressure for resistance on F. fusca, the primary pest of seedling cotton.


Subject(s)
Animal Distribution , Biota , Gossypium , Thysanoptera/physiology , Animals , Gossypium/growth & development , Population Dynamics , Southeastern United States
SELECTION OF CITATIONS
SEARCH DETAIL
...