Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Radioanal Nucl Chem ; 315(2): 395-408, 2018.
Article in English | MEDLINE | ID: mdl-29497226

ABSTRACT

This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO2 in two materials, and as a mixture of UO2, U3O8 and an intermediate species U3O7 in the third material.

2.
J Chem Phys ; 142(21): 214506, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26049507

ABSTRACT

Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.

3.
Phys Rev Lett ; 111(17): 176801, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24206511

ABSTRACT

We report the first direct measurement of transport properties of surface states in the topological insulator Bi(0.91)Sb(0.09) (111) from the weak-field Hall effect and Shubnikov-de Haas oscillations. We find that the holelike surface band displays an unexpectedly high mobility 23,000-85,000 cm(2)/V s, which is the highest mobility so far reported in bismuth-based topological insulators. This result provides the first quantitative assessment of the effect of alloy disorder on the mobility of surface states in topological insulators. We show that the 9% alloy disorder decreases the mobility of surface states by a factor of less than 2.3.

4.
J Phys Chem Lett ; 2(8): 921-5, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-26295629

ABSTRACT

Developing three-dimensional (3D) graphene assemblies with properties similar to those individual graphene sheets is a promising strategy for graphene-based electrodes. Typically, the synthesis of 3D graphene assemblies relies on van der Waals forces for holding the graphene sheets together, resulting in bulk properties that do not reflect those reported for individual graphene sheets. Here, we report the use of sol-gel chemistry to introduce chemical bonding between the graphene sheets and control the bulk properties of graphene-based aerogels. Adjusting synthetic parameters allows a wide range of control over surface area, pore volume, and pore size, as well as the nature of the chemical cross-links (sp(2) vs sp(3)). The bulk properties of the graphene-based aerogels represent a significant step toward realizing the properties of individual graphene sheets in a 3D assembly with surface areas approaching the theoretical value of an individual sheet.

5.
Geochem Trans ; 9: 2, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18205927

ABSTRACT

Strontium sorption to amorphous silica and goethite was measured as a function of pH and dissolved strontium and carbonate concentrations at 25 degrees C. Strontium sorption gradually increases from 0 to 100% from pH 6 to 10 for both phases and requires multiple outer-sphere surface complexes to fit the data. All data are modeled using the triple layer model and the site-occupancy standard state; unless stated otherwise all strontium complexes are mononuclear. Strontium sorption to amorphous silica in the presence and absence of dissolved carbonate can be fit with tetradentate Sr2+ and SrOH+ complexes on the beta-plane and a monodentate Sr2+complex on the diffuse plane to account for strontium sorption at low ionic strength. Strontium sorption to goethite in the absence of dissolved carbonate can be fit with monodentate and tetradentate SrOH+ complexes and a tetradentate binuclear Sr2+ species on the beta-plane. The binuclear complex is needed to account for enhanced sorption at hgh strontium surface loadings. In the presence of dissolved carbonate additional monodentate Sr2+ and SrOH+ carbonate surface complexes on the beta-plane are needed to fit strontium sorption to goethite. Modeling strontium sorption as outer-sphere complexes is consistent with quantitative analysis of extended X-ray absorption fine structure (EXAFS) on selected sorption samples that show a single first shell of oxygen atoms around strontium indicating hydrated surface complexes at the amorphous silica and goethite surfaces. Strontium surface complexation equilibrium constants determined in this study combined with other alkaline earth surface complexation constants are used to recalibrate a predictive model based on Born solvation and crystal-chemistry theory. The model is accurate to about 0.7 log K units. More studies are needed to determine the dependence of alkaline earth sorption on ionic strength and dissolved carbonate and sulfate concentrations for the development of a robust surface complexation database to estimate alkaline earth sorption in the environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...