Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Evol Hum Sci ; 6: e8, 2024.
Article in English | MEDLINE | ID: mdl-38516369

ABSTRACT

Previous work has proposed various mechanisms by which the environment may affect the emergence of linguistic features. For example, dry air may cause careful control of pitch to be more effortful, and so affect the emergence of linguistic distinctions that rely on pitch such as lexical tone or vowel inventories. Criticisms of these proposals point out that there are both historical and geographic confounds that need to be controlled for. We take a causal inference approach to this problem to design the most detailed test of the theory to date. We analyse languages from the Bantu language family, using a prior geographic-phylogenetic tree of relationships to establish where and when languages were spoken. This is combined with estimates of humidity for those times and places, taken from historical climate models. We then estimate the strength of causal relationships in a causal path model, controlling for various influences of inheritance and borrowing. We find no evidence to support the previous claims that humidity affects the emergence of lexical tone. This study shows how using causal inference approaches lets us test complex causal claims about the cultural evolution of language.

2.
ACS Cent Sci ; 10(2): 272-282, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38435512

ABSTRACT

The rapid photochemical conversion of materials from liquid to solid (i.e., curing) has enabled the fabrication of modern plastics used in microelectronics, dentistry, and medicine. However, industrialized photocurables remain restricted to unimolecular bond homolysis reactions (Type I photoinitiations) that are driven by high-energy UV light. This narrow mechanistic scope both challenges the production of high-resolution objects and restricts the materials that can be produced using emergent manufacturing technologies (e.g., 3D printing). Herein we develop a photosystem based on triplet-triplet annihilation upconversion (TTA-UC) that efficiently drives a Type I photocuring process using green light at low power density (<10 mW/cm2) and in the presence of ambient oxygen. This system also exhibits a superlinear dependence of its cure depth on the light exposure intensity, which enhances spatial resolution. This enables for the first-time integration of TTA-UC in an inexpensive, rapid, and high-resolution manufacturing process, digital light processing (DLP) 3D printing. Moreover, relative to traditional Type I and Type II (photoredox) strategies, the present TTA-UC photoinitiation method results in improved cure depth confinement and resin shelf stability. This report provides a user-friendly avenue to utilize TTA-UC in ambient photochemical processes and paves the way toward fabrication of next-generation plastics with improved geometric precision and functionality.

3.
Immunohorizons ; 8(2): 136-146, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38334757

ABSTRACT

hnRNP A1 is an important RNA-binding protein that influences many stages of RNA processing, including transcription, alternative splicing, mRNA nuclear export, and RNA stability. However, the role of hnRNP A1 in immune cells, specifically CD4+ T cells, remains unclear. We previously showed that Akt phosphorylation of hnRNP A1 was dependent on TCR signal strength and was associated with Treg differentiation. To explore the impact of hnRNP A1 phosphorylation by Akt on CD4+ T cell differentiation, our laboratory generated a mutant mouse model, hnRNP A1-S199A (A1-MUT) in which the major Akt phosphorylation site on hnRNP A1 was mutated to alanine using CRISPR Cas9 technology. Immune profiling of A1-MUT mice revealed changes in the numbers of Tregs in the mesenteric lymph node. We found no significant differences in naive CD4+ T cell differentiation into Th1, Th2, Th17, or T regulatory cells (Tregs) in vitro. In vivo, Treg differentiation assays using OTII-A1-Mut CD4+ T cells exposed to OVA food revealed migration and homing defects in the A1-MUT but no change in Treg induction. A1-MUT mice were immunized with NP- keyhole limpet hemocyanin, and normal germinal center development, normal numbers of NP-specific B cells, and no change in Tfh numbers were observed. In conclusion, Akt phosphorylation of hnRNP A1 S199 does not play a role in CD4+ T cell fate or function in the models tested. This hnRNP A1-S199A mouse model should be a valuable tool to study the role of Akt phosphorylation of hnRNP A1-S199 in different cell types or other mouse models of human disease.


Subject(s)
Cell Differentiation , Heterogeneous Nuclear Ribonucleoprotein A1 , T-Lymphocytes , Animals , Mice , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, T-Cell/metabolism , Serine/metabolism , Signal Transduction , T-Lymphocytes/cytology
4.
Langmuir ; 40(5): 2519-2530, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38284168

ABSTRACT

Singlet fission produces a pair of low-energy spin-triplet excitons from a single high-energy spin-singlet exciton. While this process offers the potential to enhance the efficiency of silicon solar cells by ∼30%, meeting this goal requires overlayer materials that can efficiently transport triplet excitons to an underlying silicon substrate. Herein, we demonstrate that the chemical functionalization of silicon surfaces controls the structure of vapor-deposited thin films of perylenediimide (PDI) dyes, which are prototypical singlet fission materials. Using a combination of atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS), we find terminating Si(111) with either a thin, polar oxide layer (SiOx) or with hydrophobic methyl groups (Si-CH3) alters the structures of the resulting PDI films. While PDI films grown on SiOx are comprised of small crystalline grains that largely adopt an "edge-on" orientation with respect to the silicon surface, films grown on Si-CH3 contain large grains that prefer to align in a "face-on" manner with respect to the substrate. This "face-on" orientation is expected to enhance exciton transport to silicon. Interestingly, we find that the preferred mode of growth for different PDIs correlates with the space group associated with bulk crystals of these compounds. While PDIs that inhabit a monoclinic (P21/c) space group nucleate films by forming tall and sparse crystalline columns, PDIs that inhabit triclinic (P1̅) space groups afford films comprised of uniform, lamellar PDI domains. The results highlight that silicon surface functionalization profoundly impacts PDI thin film growth, and rational selection of a hydrophobic surface that promotes "face-on" adsorption may improve energy transfer to silicon.

6.
J Bacteriol ; 206(1): e0021723, 2024 01 25.
Article in English | MEDLINE | ID: mdl-37850798

ABSTRACT

Multidrug efflux is one of the major mechanisms of antibiotic resistance identified in clinical isolates of the human pathogen Acinetobacter baumannii. The multiple antibiotic resistance in this species is often enabled by the overproduction of the tripartite efflux pump AdeABC. In this pump, AdeB is the inner membrane transporter from the resistance-nodulation-division (RND) superfamily of proteins, which is responsible for the recognition and efflux of multiple structurally unrelated compounds. Like other RND transporters, AdeB is a trimeric protein with ligand-binding sites located in the large periplasmic domains. Previous structural studies, however, highlighted the uniqueness of AdeB interactions with ligands. Up to three ligand molecules were bound to one protomer of AdeB, mapping its substrate translocation path. In this study, we introduced single and double substitutions in the identified ligand-binding sites of AdeB. Our results show that the mechanism of substrate translocation by AdeB is different from that of other characterized RND transporters and that the functional interactions between the sites are nonadditive. We identified AdeB mutants with both the loss and the gain of antibiotic susceptibility phenotypes, as well as AdeB mutations making A. baumannii cells overproducing such pump variants even more susceptible to multiple antibiotics than efflux-deficient cells. IMPORTANCE Multidrug efflux pumps of the resistance-nodulation-division superfamily of proteins are important contributors to various aspects of bacterial physiology and antibiotic resistance. Studies of the best-characterized model transporter AcrB from Escherichia coli suggested that these transporters operate by a functional rotation mechanism in which various substrates bind to at least two different binding sites. This study suggests that the mechanism of AdeB is distinct and that the binding sites in this transporter are functionally linked.


Subject(s)
Acinetobacter baumannii , Escherichia coli Proteins , Humans , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Bacterial Proteins/metabolism , Ligands , Anti-Bacterial Agents/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Binding Sites , Escherichia coli/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins/metabolism , Escherichia coli Proteins/metabolism
7.
J Phys Chem Lett ; 14(50): 11497-11505, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38088867

ABSTRACT

Materials that undergo singlet fission are of interest for their use in light-harvesting, photocatalysis, and quantum information science, but their ability to undergo fission can be sensitive to local variations in molecular packing. Herein we employ transient absorption microscopy, molecular dynamics simulations, and electronic structure calculations to interrogate how structures found at the edges of orthorhombic rubrene crystals impact singlet fission. Within a micrometer-scale spatial region at the edges of rubrene crystals, we find that the rate of singlet fission increases nearly 4-fold. This observation is consistent with formation of a region at crystal edges with reduced order that accelerates singlet fission by disrupting the symmetry found in rubrene's orthorhombic crystal structure. Our work demonstrates that structural distortions of singlet fission materials can be used to control fission in time and in space, potentially offering a means of controlling this process in light harvesting and quantum information applications.

8.
J Phys Chem Lett ; 14(32): 7215-7222, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37552568

ABSTRACT

Semiconducting nanocrystals passivated with organic ligands have emerged as a powerful platform for light harvesting, light-driven chemical reactions, and sensing. Due to their complexity and size, little structural information is available from experiments, making these systems challenging to model computationally. Here, we develop a machine-learned force field trained on DFT data and use it to investigate the surface chemistry of a PbS nanocrystal interfaced with acetate ligands. In doing so, we go beyond considering individual local minimum energy geometries and, importantly, circumvent a precarious issue associated with the assumption of a single assigned atomic partial charge for each element in a nanocrystal, independent of its structural position. We demonstrate that the carboxylate ligands passivate the metal-rich surfaces by adopting a very wide range of "tilted-bridge" and "bridge" geometries and investigate the corresponding ligand IR spectrum. This work illustrates the potential of machine-learned force fields to transform computational modeling of these materials.

9.
J Phys Chem C Nanomater Interfaces ; 127(30): 14557-14586, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37554548

ABSTRACT

Ultrafast optical microscopy, generally employed by incorporating ultrafast laser pulses into microscopes, can provide spatially resolved mechanistic insight into scientific problems ranging from hot carrier dynamics to biological imaging. This Review discusses the progress in different ultrafast microscopy techniques, with a focus on transient absorption and two-dimensional microscopy. We review the underlying principles of these techniques and discuss their respective advantages and applicability to different scientific questions. We also examine in detail how instrument parameters such as sensitivity, laser power, and temporal and spatial resolution must be addressed. Finally, we comment on future developments and emerging opportunities in the field of ultrafast microscopy.

10.
Nat Chem ; 15(8): 1172-1178, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37308710

ABSTRACT

Hybrid structures formed between organic molecules and inorganic quantum dots can accomplish unique photophysical transformations by taking advantage of their disparate properties. The electronic coupling between these materials is typically weak, leading photoexcited charge carriers to spatially localize to the dot or to a molecule at its surface. However, we show that by converting a chemical linker that covalently binds anthracene molecules to silicon quantum dots from a carbon-carbon single bond to a double bond, we access a strong coupling regime where excited carriers spatially delocalize across both anthracene and silicon. By pushing the system to delocalize, we design a photon upconversion system with a higher efficiency (17.2%) and lower threshold intensity (0.5 W cm-2) than that of a corresponding weakly coupled system. Our results show that strong coupling between molecules and nanostructures achieved through targeted linking chemistry provides a complementary route for tailoring properties in materials for light-driven applications.

11.
Philos Trans R Soc Lond B Biol Sci ; 378(1883): 20220300, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37381847

ABSTRACT

Despite the global spread of intensive agriculture, many populations retained foraging or mixed subsistence strategies until well into the twentieth century. Understanding why has been a longstanding puzzle. One explanation, called the marginal habitat hypothesis, is that foraging persisted because foragers tended to live in marginal habitats generally not suited to agriculture. However, recent empirical studies have not supported this view. The alternative but untested oasis hypothesis of agricultural intensification claims that intensive agriculture developed in areas with low biodiversity and a reliable water source not reliant on local rainfall. We test both the marginal habitat and oasis hypotheses using a cross-cultural sample drawn from the 'Ethnographic atlas' (Murdock 1967 Ethnology 6, 109-236). Our analyses provide support for both hypotheses. We found that intensive agriculture was unlikely in areas with high rainfall. Further, high biodiversity, including pathogens associated with high rainfall, appears to have limited the development of intensive agriculture. Our analyses of African societies show that tsetse flies, elephants and malaria are negatively associated with intensive agriculture, but only the effect of tsetse flies reached significance. Our results suggest that in certain ecologies intensive agriculture may be difficult or impossible to develop but that generally lower rainfall and biodiversity is favourable for its emergence. This article is part of the theme issue 'Evolutionary ecology of inequality'.


Subject(s)
Agriculture , Horticulture , Ecology , Anthropology, Cultural , Biodiversity
12.
R Soc Open Sci ; 10(5): 221095, 2023 May.
Article in English | MEDLINE | ID: mdl-37234490

ABSTRACT

Gender biases in fictional dialogue are well documented in many media. In film, television and books, female characters tend to talk less than male characters, talk to each other less than male characters talk to each other, and have a more limited range of things to say. Identifying these biases is an important step towards addressing them. However, there is a lack of solid data for video games, now one of the major mass media which has the ability to shape conceptions of gender and gender roles. We present the Video Game Dialogue Corpus, the first large-scale, consistently coded corpus of video game dialogue, which makes it possible for the first time to measure and monitor gender representation in video game dialogue. It demonstrates that there is half as much dialogue from female characters as from male characters. Some of this is due to a lack of female characters, but there are also biases in who female characters speak to, and what they say. We make suggestions for how game developers can avoid these biases to make more inclusive games.

13.
PLoS One ; 18(5): e0283218, 2023.
Article in English | MEDLINE | ID: mdl-37224178

ABSTRACT

For a single species, human kinship organization is both remarkably diverse and strikingly organized. Kinship terminology is the structured vocabulary used to classify, refer to, and address relatives and family. Diversity in kinship terminology has been analyzed by anthropologists for over 150 years, although recurrent patterning across cultures remains incompletely explained. Despite the wealth of kinship data in the anthropological record, comparative studies of kinship terminology are hindered by data accessibility. Here we present Kinbank, a new database of 210,903 kinterms from a global sample of 1,229 spoken languages. Using open-access and transparent data provenance, Kinbank offers an extensible resource for kinship terminology, enabling researchers to explore the rich diversity of human family organization and to test longstanding hypotheses about the origins and drivers of recurrent patterns. We illustrate our contribution with two examples. We demonstrate strong gender bias in the phonological structure of parent terms across 1,022 languages, and we show that there is no evidence for a coevolutionary relationship between cross-cousin marriage and bifurcate-merging terminology in Bantu languages. Analysing kinship data is notoriously challenging; Kinbank aims to eliminate data accessibility issues from that challenge and provide a platform to build an interdisciplinary understanding of kinship.


Subject(s)
Anthropology , Sexism , Humans , Female , Male , Databases, Factual , Family , Interdisciplinary Studies
14.
Angew Chem Int Ed Engl ; 62(22): e202219140, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36988076

ABSTRACT

The use of visible light to drive polymerizations with spatiotemporal control offers a mild alternative to contemporary UV-light-based production of soft materials. In this spectral region, photoredox catalysis represents the most efficient polymerization method, yet it relies on the use of heavy-atoms, such as precious metals or toxic halogens. Herein, spin-orbit charge transfer intersystem crossing from boron dipyrromethene (BODIPY) dyads bearing twisted aromatic groups is shown to enable efficient visible light polymerizations in the absence of heavy-atoms. A ≈5-15× increase in polymerization rate and improved photostability was achieved for twisted BODIPYs relative to controls. Furthermore, monomer polarity had a distinct effect on polymerization rate, which was attributed to charge transfer stabilization based on ultrafast transient absorption and phosphorescence spectroscopies. Finally, rapid and high-resolution 3D printing with a green LED was demonstrated using the present photosystem.

15.
Proc Natl Acad Sci U S A ; 120(3): e2217035120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36626548

ABSTRACT

Solvated electrons are powerful reducing agents capable of driving some of the most energetically expensive reduction reactions. Their generation under mild and sustainable conditions remains challenging though. Using near-ultraviolet irradiation under low-intensity one-photon conditions coupled with electrochemical and optical detection, we show that the yield of solvated electrons in water is increased more than 10 times for nanoparticle-decorated electrodes compared to smooth silver electrodes. Based on the simulations of electric fields and hot carrier distributions, we determine that hot electrons generated by plasmons are injected into water to form solvated electrons. Both yield enhancement and hot carrier production spectrally follow the plasmonic near-field. The ability to enhance solvated electron yields in a controlled manner by tailoring nanoparticle plasmons opens up a promising strategy for exploiting solvated electrons in chemical reactions.


Subject(s)
Electrons , Nanoparticles , Light , Ultraviolet Rays , Water
16.
Cogn Sci ; 47(1): e13224, 2023 01.
Article in English | MEDLINE | ID: mdl-36655934

ABSTRACT

Previous research on linguistic relativity and economic decisions hypothesized that speakers of languages with obligatory tense marking of future time reference (FTR) should value future rewards less than speakers of languages which permit present tense FTR. This was hypothesized on the basis of obligatory linguistic marking (e.g., will) causing speakers to construe future events as more temporally distal and thereby to exhibit increased "temporal discounting": the subjective devaluation of outcomes as the delay until they will occur increases. However, several aspects of this hypothesis are incomplete. First, it overlooks the role of "modal" FTR structures which encode notions about the likelihood of future outcomes (e.g., might). This may influence "probability discounting": the subjective devaluation of outcomes as the probability of their occurrence decreases. Second, the extent to which linguistic structures are subjectively related to temporal or probability discounting differences is currently unknown. To address these, we elicited FTR language and subjective ratings of temporal distance and probability from speakers of English, which exhibits strongly grammaticized FTR, and Dutch, which does not. Several findings went against the predictions of the previous hypothesis: Framing an FTR statement in the present ("Ellie arrives later on") versus the future tense ("…will arrive…") did not affect ratings of temporal distance; English speakers rated future statements as relatively more temporally proximal than Dutch speakers; and English and Dutch speakers rated future tenses as encoding high certainty, which suggests that obligatory future tense marking might result in less discounting. Additionally, compared with Dutch speakers, English speakers used more low-certainty terms in general (e.g., may) and as a function of various experimental factors. We conclude that the prior cross-linguistic observations of the link between FTR and psychological discounting may be caused by the connection between low-certainty modal structures and probability discounting, rather than future tense and temporality.


Subject(s)
Language , Linguistics , Humans , Time , Probability
17.
J Am Chem Soc ; 144(49): 22676-22688, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36450151

ABSTRACT

Semiconductor nanocrystals (NCs) interfaced with molecular ligands that function as charge and energy acceptors are an emerging platform for the design of light-harvesting, photon-upconverting, and photocatalytic materials. However, NC systems explored for these applications often feature high concentrations of bound acceptor ligands, which can lead to ligand-ligand interactions that may alter each system's ability to undergo charge and energy transfer. Here, we demonstrate that aggregation of acceptor ligands impacts the rate of photoinduced NC-to-ligand charge transfer between lead(II) sulfide (PbS) NCs and perylenediimide (PDI) electron acceptors. As the concentration of PDI acceptors is increased, we find the average electron transfer rate from PbS to PDI ligands decreases by nearly an order of magnitude. The electron transfer rate slowdown with increasing PDI concentration correlates strongly with the appearance of PDI aggregates in steady-state absorption spectra. Electronic structure calculations and molecular dynamics (MD) simulations suggest PDI aggregation slows the rate of electron transfer by reducing orbital overlap between PbS charge donors and PDI charge acceptors. While we find aggregation slows electron transfer in this system, the computational models we employ predict ligand aggregation could also be used to speed electron transfer by producing delocalized states that exhibit improved NC-molecule electronic coupling and energy alignment with NC conduction band states. Our results demonstrate that ligand aggregation can alter rates of photoinduced electron transfer between NCs and organic acceptor ligands and should be considered when designing hybrid NC:molecule systems for charge separation.


Subject(s)
Electrons , Nanoparticles , Ligands , Imides/chemistry
18.
Acc Chem Res ; 55(11): 1561-1572, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35604637

ABSTRACT

Symmetry breaking charge transfer (SBCT) is a process in which a pair of identical chromophores absorb a photon and use its energy to transfer an electron from one chromophore to the other, breaking the symmetry of the chromophore pair. This excited state phenomenon is observed in photosynthetic organisms where it enables efficient formation of separated charges that ultimately catalyze biosynthesis. SBCT has also been proposed as a means for developing photovoltaics and photocatalytic systems that operate with minimal energy loss. It is known that SBCT in both biological and artificial systems is in part made possible by the local environment in which it occurs, which can move to stabilize the asymmetric SBCT state. However, how environmental degrees of freedom act in concert with steric and structural constraints placed on a chromophore pair to dictate its ability to generate long-lived charge pairs via SBCT remain open topics of investigation.In this Account, we compare a broad series of dipyrrin dimers that are linked by distinct bridging groups to discern how the spatial separation and mutual orientation of linked chromophores and the structural flexibility of their linker each impact SBCT efficiency. Across this material set, we observe a general trend that SBCT is accelerated as the spatial separation between dimer chromophores decreases, consistent with the expectation that the electronic coupling between these units varies exponentially with their separation. However, one key observation is that the rate of charge recombination following SBCT was found to slow with decreasing interchromophore separation, rather than speed up. This stems from an enhancement of the dimer's structural rigidity due to increasing steric repulsion as the length of their linker shrinks. This rigidity further inhibits charge recombination in systems where symmetry has already enforced zero HOMO-LUMO overlap. Additionally, for the forward transfer, the active torsion is shown to increase LUMO-LUMO coupling, allowing for faster SBCT within bridging groups.By understanding trends for how rates of SBCT and charge recombination depend on a dimer's internal structure and its environment, we identify design guidelines for creating artificial systems for driving sustained light-induced charge separation. Such systems can find application in solar energy technologies and photocatalytic applications and can serve as a model for light-induced charge separation in biological systems.


Subject(s)
Photosynthesis , Solar Energy , Boron Compounds , Catalysis , Sunlight
19.
J Phys Chem Lett ; 13(6): 1416-1423, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35119280

ABSTRACT

Semiconductor nanocrystals (NCs) have emerged as promising photocatalysts. However, NCs are often functionalized with complex ligand shells that contain not only charge acceptors but also other "spectator ligands" that control NC solubility and affinity for target reactants. Here, we show that spectator ligands are not passive observers of photoinduced charge transfer but rather play an active role in this process. We find the rate of electron transfer from quantum-confined PbS NCs to perylenediimide acceptors can be varied by over a factor of 4 simply by coordinating cinnamate ligands with distinct dipole moments to NC surfaces. Theoretical calculations indicate this rate variation stems from both ligand-induced changes in the free energy for charge transfer and electrostatic interactions that alter perylenediimide electron acceptor orientation on NC surfaces. Our work shows NC-to-molecule charge transfer can be fine-tuned through ligand shell design, giving researchers an additional handle for enhancing NC photocatalysis.

20.
Chem Sci ; 12(19): 6737-6746, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-34040750

ABSTRACT

Hybrid materials comprised of inorganic quantum dots functionalized with small-molecule organic chromophores have emerged as promising materials for reshaping light's energy content. Quantum dots in these structures can serve as light harvesting antennas that absorb photons and pass their energy to molecules bound to their surface in the form of spin-triplet excitons. Energy passed in this manner can fuel upconversion schemes that use triplet fusion to convert infrared light into visible emission. Likewise, triplet excitons passed in the opposite direction, from molecules to quantum dots, can enable solar cells that use singlet fission to circumvent the Shockley-Queisser limit. Silicon QDs represent a key target for these hybrid materials due to silicon's biocompatibility and preeminence within the solar energy market. However, while triplet transfer from silicon QDs to molecules has been observed, no reports to date have shown evidence of energy moving in the reverse direction. Here, we address this gap by creating silicon QDs functionalized with perylene chromophores that exhibit bidirectional triplet exciton transfer. Using transient absorption, we find triplet transfer from silicon to perylene takes place over 4.2 µs while energy transfer in the reverse direction occurs two orders of magnitude faster, on a 22 ns timescale. To demonstrate this system's utility, we use it to create a photon upconversion system that generates blue emission at 475 nm using photons with wavelengths as long as 730 nm. Our work shows formation of covalent linkages between silicon and organic molecules can provide sufficient electronic coupling to allow efficient bidirectional triplet exchange, enabling new technologies for photon conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...