Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 24(53): 14028-14033, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30070741

ABSTRACT

A new strategy towards tubular hydrogen-bonded polymers based on the self-assembly of isocytosine tautomers in orthogonal directions is proposed and experimentally verified, including by 1 H fast magic-angle spinning (MAS) solid-state NMR. The molecular tubes obtained possess large internal diameter and tailor-made outer functionalities rendering them potential candidates for a number of applications.

2.
J Magn Reson ; 260: 89-97, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26432398

ABSTRACT

A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+kHz) suppresses t1 noise in the indirect dimension of two-dimensional (1)H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl (1)H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion--this is quantified by comparing two-dimensional (1)H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear (1)H-(1)H double quantum (DQ)/single quantum (SQ) MAS and (14)N-(1)H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Algorithms , Cytidine/analogs & derivatives , Cytidine/chemistry , DNA/chemistry , Methylation , Organosilicon Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...