Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(15): 4948-4952, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30633837

ABSTRACT

In living cells, redox chains rely on nanoconfinement using tiny enclosures, such as the mitochondrial matrix or chloroplast stroma, to concentrate enzymes and limit distances that nicotinamide cofactors and other metabolites must diffuse. In a chemical analogue exploiting this principle, nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+ are cycled rapidly between ferredoxin-NADP+ reductase and a second enzyme-the pairs being juxtaposed within the 5-100 nm scale pores of an indium tin oxide electrode. The resulting electrode material, denoted (FNR+E2)@ITO/support, can drive and exploit a potentially large number of enzyme-catalysed reactions.

2.
Science ; 337(6091): 209-12, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22798609

ABSTRACT

The movement of dislocations in a crystal is the key mechanism for plastic deformation in all materials. Studies of dislocations have focused on three-dimensional materials, and there is little experimental evidence regarding the dynamics of dislocations and their impact at the atomic level on the lattice structure of graphene. We studied the dynamics of dislocation pairs in graphene, recorded with single-atom sensitivity. We examined stepwise dislocation movement along the zig-zag lattice direction mediated either by a single bond rotation or through the loss of two carbon atoms. The strain fields were determined, showing how dislocations deform graphene by elongation and compression of C-C bonds, shear, and lattice rotations.

3.
ACS Nano ; 5(2): 1047-55, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21261253

ABSTRACT

In order to ensure that vacuum electronic devices work with high overall efficiency, it is required to use materials with low secondary electron emission to fabricate or coat collectors, grids, and envelope walls of the devices. We report that the secondary electron yields of monolayer graphenes are ultralow, comparable with the lowest yields of the materials currently used in this practical application. This offers a pathway for the application of light graphene with only one-atom thickness and good electronic and thermal conductivities in vacuum electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...