Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Sci Rep ; 13(1): 17064, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816924

ABSTRACT

Phyllachora maydis is a fungal pathogen causing tar spot of corn (Zea mays L.), a new and emerging, yield-limiting disease in the United States. Since being first reported in Illinois and Indiana in 2015, P. maydis can now be found across much of the corn growing regions of the United States. Knowledge of the epidemiology of P. maydis is limited but could be useful in developing tar spot prediction tools. The research presented here aims to elucidate the environmental conditions necessary for the development of tar spot in the field and the creation of predictive models to anticipate future tar spot epidemics. Extended periods (30-day windowpanes) of moderate mean ambient temperature (18-23 °C) were most significant for explaining the development of tar spot. Shorter periods (14- to 21-day windowpanes) of moisture (relative humidity, dew point, number of hours with predicted leaf wetness) were negatively correlated with tar spot development. These weather variables were used to develop multiple logistic regression models, an ensembled model, and two machine learning models for the prediction of tar spot development. This work has improved the understanding of P. maydis epidemiology and provided the foundation for the development of a predictive tool for anticipating future tar spot epidemics.


Subject(s)
Plant Diseases , Zea mays , United States/epidemiology , Zea mays/microbiology , Plant Diseases/microbiology , Phyllachorales , Illinois/epidemiology
2.
Nat Commun ; 14(1): 6043, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758723

ABSTRACT

Plant disease resistance genes are widely used in agriculture to reduce disease outbreaks and epidemics and ensure global food security. In soybean, Rps (Resistance to Phytophthora sojae) genes are used to manage Phytophthora sojae, a major oomycete pathogen that causes Phytophthora stem and root rot (PRR) worldwide. This study aims to identify temporal changes in P. sojae pathotype complexity, diversity, and Rps gene efficacy. Pathotype data was collected from 5121 isolates of P. sojae, derived from 29 surveys conducted between 1990 and 2019 across the United States, Argentina, Canada, and China. This systematic review shows a loss of efficacy of specific Rps genes utilized for disease management and a significant increase in the pathotype diversity of isolates over time. This study finds that the most widely deployed Rps genes used to manage PRR globally, Rps1a, Rps1c and Rps1k, are no longer effective for PRR management in the United States, Argentina, and Canada. This systematic review emphasizes the need to widely introduce new sources of resistance to P. sojae, such as Rps3a, Rps6, or Rps11, into commercial cultivars to effectively manage PRR going forward.


Subject(s)
Phytophthora , Phytophthora/genetics , Genes, Plant , Agriculture , Argentina , Canada/epidemiology
3.
G3 (Bethesda) ; 13(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37652038

ABSTRACT

Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies.


Subject(s)
Transcriptome , Zea mays , Zea mays/genetics , Zea mays/microbiology , Genome-Wide Association Study , Chromosome Mapping , Base Sequence , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics
4.
Plant Dis ; 107(12): 3975-3983, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37415355

ABSTRACT

Pythium spp. cause damping-off of soybean, especially when soil conditions at or shortly after planting are cool and wet. Soybean planting dates continue to shift to earlier dates, so germinating seed and seedlings are exposed to periods of cold stress at a time which favors infection by Pythium, and seedling disease occurs. The objective of this study was to assess infection timing and cold stress on soybean seedling disease severity caused by four Pythium spp. prevalent in Iowa, namely P. lutarium, P. oopapillum, P. sylvaticum, and P. torulosum. Each species was used individually to inoculate soybean cultivar 'Sloan' using a rolled towel assay. Two temperature treatments (continuous 18°C [C18]; a 48-h cold stress period at 10°C [CS]) were applied. Soybean seedling age was divided into five growth stages (GS1 to GS5). Root rot severity and root length were assessed at 2, 4, 7, and 10 days after inoculation (DAI). At C18, root rot was greatest when soybean was inoculated with P. lutarium or P. sylvaticum at GS1 (seed imbibes water) and with P. oopapillum or P. torulosum at GS1, GS2 (radicle elongation), and GS3 (hypocotyl emergence). After CS, soybean susceptibility to P. lutarium and P. sylvaticum was reduced compared to C18 for inoculation at all GSs except GS5 (unifoliate leaf emergence). Conversely, root rot by P. oopapillum and P. torulosum was greater after CS compared to C18. Data from this study demonstrate that greater root rot, and consequently more damping-off, is likely if infection occurs at early germination stages before seedling emergence.


Subject(s)
Pythium , Glycine max , Cold-Shock Response , Plant Diseases , Cold Temperature , Seedlings
5.
PLoS One ; 18(7): e0287590, 2023.
Article in English | MEDLINE | ID: mdl-37418376

ABSTRACT

Phytophthora sojae is a soil-borne oomycete and the causal agent of Phytophthora root and stem rot (PRR) in soybean (Glycine max [L.] Merrill). Yield losses attributed to P. sojae are devastating in disease-conducive environments, with global estimates surpassing 1.1 million tonnes annually. Historically, management of PRR has entailed host genetic resistance (both vertical and horizontal) complemented by disease-suppressive cultural practices (e.g., oomicide application). However, the vast expansion of complex and/or diverse P. sojae pathotypes necessitates developing novel technologies to attenuate PRR in field environments. Therefore, the objective of the present study was to couple high-throughput sequencing data and deep learning to elucidate molecular features in soybean following infection by P. sojae. In doing so, we generated transcriptomes to identify differentially expressed genes (DEGs) during compatible and incompatible interactions with P. sojae and a mock inoculation. The expression data were then used to select two defense-related transcription factors (TFs) belonging to WRKY and RAV families. DNA Affinity Purification and sequencing (DAP-seq) data were obtained for each TF, providing putative DNA binding sites in the soybean genome. These bound sites were used to train Deep Neural Networks with convolutional and recurrent layers to predict new target sites of WRKY and RAV family members in the DEG set. Moreover, we leveraged publicly available Arabidopsis (Arabidopsis thaliana) DAP-seq data for five TF families enriched in our transcriptome analysis to train similar models. These Arabidopsis data-based models were used for cross-species TF binding site prediction on soybean. Finally, we created a gene regulatory network depicting TF-target gene interactions that orchestrate an immune response against P. sojae. Information herein provides novel insight into molecular plant-pathogen interaction and may prove useful in developing soybean cultivars with more durable resistance to P. sojae.


Subject(s)
Arabidopsis , Phytophthora , Humans , Disease Resistance/genetics , Glycine max/metabolism , Phytophthora/genetics , Arabidopsis/genetics , Gene Regulatory Networks , Plant Diseases/genetics
6.
Mol Plant Pathol ; 24(7): 675-692, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36116105

ABSTRACT

Goss's bacterial wilt and leaf blight of maize (Zea mays) caused by the gram-positive coryneform bacterium Clavibacter nebraskensis is an economically important disease in North America. C. nebraskensis is included within the high-risk list of quarantine pathogens by several plant protection organizations (EPPO code: CORBMI), hence it is under strict quarantine control around the world. The causal agent was reported for the first time on maize in Nebraska (USA) in 1969. After an outbreak during the 1970s, prevalence of the disease decreased in the 1980s to the early 2000s, before the disease resurged causing a serious threat to maize production in North America. The re-emergence of Goss's wilt in the corn belt of the United States led to several novel achievements in understanding the pathogen biology and disease control. In this review, we provide an updated overview of the pathogen taxonomy, biology, and epidemiology as well as management strategies of Goss's wilt disease. First, a taxonomic history of the pathogen is provided followed by symptomology and host range, genetic diversity, and pathogenicity mechanisms of the bacterium. Then, utility of high-throughput molecular approaches in the precise detection and identification of the pathogen and the management strategies of the disease are explained. Finally, we highlight the role of integrated pest management strategies to combat the risk of Goss's wilt in the 21st century maize industry. DISEASE SYMPTOMS: Large (2-15 cm) tan to grey elongated oval lesions with wavy, irregular water-soaked margins on the leaves. The lesions often start at the leaf tip or are associated with wounding caused by hail or wind damage. Small (1 mm in diameter), dark, discontinuous water-soaked spots, known as "freckles", can be observed in the periphery of lesions. When backlit, the freckles appear translucent. Early infection (prior to growth stage V6) may become systemic and cause seedlings to wilt, wither, and die. Coalescence of lesions results in leaf blighting. HOST RANGE: Maize (Zea mays) is the only economic host of the pathogen. A number of Poaceae species are reported to act as secondary hosts for C. nebraskensis. TAXONOMIC STATUS OF THE PATHOGEN: Class: Actinobacteria; Order: Micrococcales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter nebraskensis. SYNONYMS: Corynebacterium nebraskense (Schuster, 1970) Vidaver & Mandel 1974; Corynebacterium michiganense pv. nebraskense (Vidaver & Mandel 1974) Dye & Kemp 1977; Corynebacterium michiganense subsp. nebraskense (Vidaver & Mandel 1974) Carlson & Vidaver 1982; Clavibacter michiganense subsp. nebraskense (Vidaver & Mandel 1974) Davis et al. 1984; Clavibacter michiganensis subsp. nebraskensis (Vidaver & Mandel 1974) Davis et al. 1984. TYPE MATERIALS: ATCC 27794T ; CFBP 2405T ; ICMP 3298T ; LMG 3700T ; NCPPB 2581T . MICROBIOLOGICAL PROPERTIES: Cells are gram-positive, orange-pigmented, pleomorphic club- or rod-shaped, nonspore-forming, nonmotile, and without flagella, approximately 0.5 × 1-2.0 µm. DISTRIBUTION: The pathogen is restricted to Canada and the United States. PHYTOSANITARY CATEGORIZATION: EPPO code CORBNE.


Subject(s)
Actinobacteria , Zea mays , Zea mays/microbiology , Clavibacter , Plants
7.
Ecol Evol ; 12(4): e8832, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35494500

ABSTRACT

The genus Phyllachora contains numerous obligate fungal parasites that produce raised, melanized structures called stromata on their plant hosts referred to as tar spot. Members of this genus are known to infect many grass species but generally do not cause significant damage or defoliation, with the exception of P. maydis which has emerged as an important pathogen of maize throughout the Americas, but the origin of this pathogen remains unknown. To date, species designations for Phyllachora have been based on host associations and morphology, and most species are assumed to be host specific. We assessed the sequence diversity of 186 single stroma isolates collected from 16 hosts representing 15 countries. Samples included both herbarium and contemporary strains that covered a temporal range from 1905 to 2019. These 186 isolates were grouped into five distinct species with strong bootstrap support. We found three closely related, but genetically distinct groups of Phyllachora are capable of infecting maize in the United States, we refer to these as the P. maydis species complex. Based on herbarium specimens, we hypothesize that these three groups in the P. maydis species complex originated from Central America, Mexico, and the Caribbean. Although two of these groups were only found on maize, the third and largest group contained contemporary strains found on maize and other grass hosts, as well as herbarium specimens from maize and other grasses that include 10 species of Phyllachora. The herbarium specimens were previously identified based on morphology and host association. This work represents the first attempt at molecular characterization of Phyllachora species infecting grass hosts and indicates some Phyllachora species can infect a broad range of host species and there may be significant synonymy in the Phyllachora genus.

8.
Plant Dis ; 106(9): 2281-2298, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35291814

ABSTRACT

Anthracnose stalk rot (ASR) of maize results in millions of dollars in losses annually in the United States. ASR, together with anthracnose leaf blight and anthracnose top dieback, is caused by the fungus Colletotrichum graminicola. Current ASR management recommendations emphasize host resistance and reduction of plant stressors (e.g., drought, heat, low fertility, or soil acidity). Stress reduction may be more difficult to achieve in the future due to more high-intensity production protocols and climate change. Moreover, cultural and chemical management practices may conflict with other important goals, including environmental sustainability and maximization of yield potential. Thus, future ASR management may rely more heavily on host resistance, for which there are relatively few highly effective sources. The last comprehensive review of C. graminicola and maize anthracnose was written over two decades ago. The genomic age has brought important new insights into mechanisms governing the host-pathogen interaction from the application of molecular and cytological technologies. This review provides a summary of our current model of maize anthracnose etiology, including how increased knowledge of molecular and cellular events could contribute to better ASR management. Improved understanding of C. graminicola taxonomy has confirmed that the fungus is specific to Zea mays, and that it colonizes living maize tissues via a critical biotrophic phase. Successful biotrophic establishment relies on an array of secreted protein effectors and secondary metabolites produced at different stages of infection and dispersed to multiple locations. These molecules could provide therapeutic targets for the next generation of transgenic or gene-edited ASR-resistant hybrids.


Subject(s)
Plant Diseases , Zea mays , Genes, Fungal , Genomics , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Zea mays/microbiology
9.
J Appl Microbiol ; 132(5): 3797-3811, 2022 May.
Article in English | MEDLINE | ID: mdl-35226387

ABSTRACT

AIMS: To isolate and characterize fungi associated with diseased soybean seedlings in Midwestern soybean production fields and to determine the influence of environmental and edaphic factors on their incidence. METHODS AND RESULTS: Seedlings were collected from fields with seedling disease history in 2012 and 2013 for fungal isolation. Environmental and edaphic data associated with each field was collected. 3036 fungal isolates were obtained and assigned to 76 species. The most abundant genera recovered were Fusarium (73%) and Trichoderma (11.2%). Other genera included Mortierella, Clonostachys, Rhizoctonia, Alternaria, Mucor, Phoma, Macrophomina and Phomopsis. Most recovered species are known soybean pathogens. However, non-pathogenic organisms were also isolated. Crop history, soil density, water source, precipitation and temperature were the main factors influencing the abundance of fungal species. CONCLUSION: Key fungal species associated with soybean seedling diseases occurring in several US production regions were characterized. This work also identified major environment and edaphic factors affecting the abundance and occurrence of these species. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification and characterization of the main pathogens associated with seedling diseases across major soybean-producing areas could help manage those pathogens, and devise more effective and sustainable practices to reduce the damage they cause.


Subject(s)
Ascomycota , Fusarium , Fusarium/genetics , Rhizoctonia , Seedlings , Glycine max
10.
Plant Dis ; 106(9): 2403-2414, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35171634

ABSTRACT

Pythium spp. is one of the major groups of pathogens that cause seedling diseases on soybean, leading to both preemergence and postemergence damping-off and root rot. More than 100 species have been identified within this genus, with Pythium irregulare, P. sylvaticum, P. ultimum var ultimum, and P. torulosum being particularly important for soybean production given their aggressiveness, prevalence, and abundance in production fields. This study investigated the antagonistic activity of potential biological control agents (BCAs) native to the U.S. Midwest against Pythium spp. First, in vitro screening identified BCAs that inhibit P. ultimum var. ultimum growth. Scanning electron microscopy demonstrated evidence of mycoparasitism of all potential biocontrol isolates against P. ultimum var. ultimum and P. torulosum, with the formation of appressorium-like structures, short hyphal branches around host hyphae, hook-shaped structures, coiling, and parallel growth of the mycoparasite along the host hyphae. Based on these promising results, selected BCAs were tested under field conditions against six different Pythium spp. Trichoderma afroharzianum 26 used alone and a mix of T. hamatum 16 + T. afroharzianum 19 used as seed treatments protected soybean seedlings from Pythium spp. infection, as BCA-treated plots had on average 15 to 20% greater plant stand and vigor than control plots. Our results also indicate that some of these potential BCAs could be added with a fungicide seed treatment with minimum inhibition occurring, depending on the fungicide active ingredient. This research highlights the need to develop tools incorporating biological control as a facet of soybean seedling disease management programs. The harnessing of native BCAs could be integrated with other management strategies to provide efficient control of seedling diseases.


Subject(s)
Fungicides, Industrial , Pythium , Fungicides, Industrial/pharmacology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Pythium/physiology , Seedlings , Seeds , Glycine max
11.
Plant Dis ; 105(12): 4014-4024, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34253043

ABSTRACT

Despite numerous environmental benefits associated with cover crop (CC) use, some farmers are reluctant to include CCs in their production systems because of reported yield declines in corn. There are numerous potential reasons for this yield decline, including seedling disease. A winter rye CC can serve as a "green bridge" for corn seedling pathogens. We hypothesized that proximity of corn seedling roots to decaying rye CC roots contributes to corn seeding disease. An experimental field plot and an on-farm study were conducted over 2 years to evaluate growth, development, and disease severity of corn seedlings planted at various distances from decaying winter rye CC plants. The experimental field plot study was conducted in a no-till corn-soybean rotation with five replications of a winter rye CC treatment seeded as (i) no-CC control, (ii) broadcast, (iii) 19-cm drilled rows, and (iv) 76-cm drilled rows. The on-farm study was no-till corn-soybean rotation with four replications of a winter rye CC seeded as 38-cm drilled rows, 76-cm drilled rows, and no-CC control. The corn was planted on 76-cm rows shortly after rye was terminated. With multiple seeding arrangements of winter rye, corn was planted at different distances from winter rye. Corn radicle root rot severity and incidence, shoot height, shoot dry weight, corn height and chlorophyll at VT (tasseling), ear parameters, and yield were collected. Soil samples were taken in the corn row and the interrow at winter rye termination, corn planting, and corn growth stage V3 (three leaves with fully developed collars) to estimate the abundance of Pythium clade B members present in soil samples. Our results showed that increased distance between winter rye residue and corn reduced seedling disease and Pythium clade B populations in the radicles and soil and increased shoot dry weight, leaf chlorophyll, plant height, and yield. This suggests that physically distancing the corn crop from the winter rye CC is one way to reduce the negative effects of a winter rye CC on corn.


Subject(s)
Seedlings , Zea mays , Seasons , Secale , Soil
12.
Front Plant Sci ; 12: 644746, 2021.
Article in English | MEDLINE | ID: mdl-33859662

ABSTRACT

In this study, four recombinant inbred line (RIL) soybean populations were screened for their response to infection by Pythium sylvaticum, Pythium irregulare, Pythium oopapillum, and Pythium torulosum. The parents, PI 424237A, PI 424237B, PI 408097, and PI 408029, had higher levels of resistance to these species in a preliminary screening and were crossed with "Williams," a susceptible cultivar. A modified seed rot assay was used to evaluate RIL populations for their response to specific Pythium species selected for a particular population based on preliminary screenings. Over 2500 single-nucleotide polymorphism (SNP) markers were used to construct chromosomal maps to identify regions associated with resistance to Pythium species. Several minor and large effect quantitative disease resistance loci (QDRL) were identified including one large effect QDRL on chromosome 8 in the population of PI 408097 × Williams. It was identified by two different disease reaction traits in P. sylvaticum, P. irregulare, and P. torulosum. Another large effect QDRL was identified on chromosome 6 in the population of PI 408029 × Williams, and conferred resistance to P. sylvaticum and P. irregulare. These large effect QDRL will contribute toward the development of improved soybean cultivars with higher levels of resistance to these common soil-borne pathogens.

13.
Plant Dis ; 105(3): 538-541, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32830593

ABSTRACT

Yield loss of corn following a winter rye cover crop (CC) has been associated with increases in seedling disease caused by Pythium spp. We hypothesized that physical separation between the CC and corn could reduce the risk of seedling disease, and benefit corn growth and development. In a growth chamber experiment, corn seedlings were planted at 0 cm and 8 to 10 cm from terminated winter rye plants. Root rot severity was assessed at crop development stage V2, and quantitative PCR was used to estimate the abundance of Pythium clade B and clade F members present in corn roots. Radicle and seminal root rot severity was numerically greater when seedlings were planted 0 cm from terminated rye plants compared with seedlings planted 8 to 10 cm away. Moreover, a greater abundance of Pythium clade B was detected in corn grown within the terminated winter rye compared with corn planted further away (P = 0.0003). No effect of distance between corn and winter rye was detected for Pythium clade F. These data contribute to our understanding of the effect of a winter rye cover crop on corn and will inform field trial management practices for farmers to reduce occasional yield loss of corn following a winter rye cover crop.


Subject(s)
Pythium , Zea mays , Seasons , Secale , Seedlings
14.
Plant Genome ; 14(1): e20063, 2021 03.
Article in English | MEDLINE | ID: mdl-33200586

ABSTRACT

Phytophthora sojae causes Phytophthora root and stem rot of soybean and has been primarily managed through deployment of qualitative Resistance to P. sojae genes (Rps genes). The effectiveness of each individual or combination of Rps gene(s) depends on the diversity and pathotypes of the P. sojae populations present. Due to the complex nature of P. sojae populations, identification of more novel Rps genes is needed. In this study, phenotypic data from previous studies of 16 panels of plant introductions (PIs) were analyzed. Panels 1 and 2 consisted of 448 Glycine max and 520 G. soja, which had been evaluated for Rps gene response with a combination of P. sojae isolates. Panels 3 and 4 consisted of 429 and 460 G. max PIs, respectively, which had been evaluated using individual P. sojae isolates with complex virulence pathotypes. Finally, Panels 5-16 (376 G. max PIs) consisted of data deposited in the USDA Soybean Germplasm Collection from evaluations with 12 races of P. sojae. Using these panels, genome-wide association (GWA) analyses were carried out by combining phenotypic and SoySNP50K genotypic data. GWA models identified two, two, six, and seven novel Rps loci with Panels 1, 2, 3, and 4, respectively. A total of 58 novel Rps loci were identified using Panels 5-16. Genetic and phenotypic dissection of these loci may lead to the characterization of novel Rps genes that can be effectively deployed in new soybean cultivars against diverse P. sojae populations.


Subject(s)
Phytophthora , Disease Resistance/genetics , Genome-Wide Association Study , Plant Diseases/genetics , Glycine max/genetics
15.
Plant Dis ; 104(9): 2489-2497, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32631201

ABSTRACT

Some Pythium spp. cause damping off and root rot in soybeans and other crop species. One of the most effective management tools to reduce disease is host resistance; however, little is known about resistance in soybean to Pythium spp. The soybean nested associated mapping (SoyNAM) parent lines are a set of germplasms that were crossed to a single hub parent to create recombinant inbred line populations for the purpose of mapping agronomic traits. The SoyNAM parents were screened for resistance to Pythium lutarium, Pythium oopapillum, Pythium sylvaticum, and Pythium torulosum in separate assays to evaluate seed and root rot severity. Of the 40 SoyNAM parents, only 'Maverick' was resistant to the four species tested; however, 13 were resistant to three species. Other lines were resistant to two, one, or none of the species tested. Correlations between seed and root rot severity for the lines assessed were weak or insignificant. Results indicate that mechanisms of resistance to seed and root rot caused by Pythium spp. may not necessarily be the same.


Subject(s)
Pythium , Plant Diseases , Seeds , Glycine max
16.
Plant Dis ; 104(3): 677-687, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31958247

ABSTRACT

The effects of winter cover crops on root disease and growth of corn and soybeans are poorly understood. A 3-year field experiment investigated the effect of winter cereal rye (Secale cereale L.) and winter camelina (Camelina sativa [L.] Crantz), used either in all three years or in rotation with each other, on corn (Zea mays L.) and soybean (Glycine max. [L.] Merr.) growth, root disease, and yield. Corn following a cover crop of camelina had reduced root disease, a lower Pythium population in seedling roots, and greater growth and yields compared with corn following a rye cover crop. Camelina and rye cover crops before soybean had either a positive or no effect on soybean growth and development, root disease, and yield. Moreover, Pythium clade B populations were greater in corn seedlings after a rye cover crop compared with those following a camelina cover crop, whereas clade F populations were greater on soybean seedlings following a camelina cover crop compared with seedlings following a rye cover crop. A winter camelina cover crop grown before corn had less-negative effects on corn seedling growth, root disease, and final yield than a winter rye cover crop before corn. Neither cover crop had negative effects on soybean, and the cover crop in the preceding spring had no measurable effects on either corn or soybean.


Subject(s)
Glycine max , Zea mays , Agriculture , Crop Production , Growth and Development , Seedlings
17.
Plant Dis ; 103(1): 110-116, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30412457

ABSTRACT

The spread of Goss's bacterial wilt and leaf blight of corn (Zea mays), caused by Clavibacter michiganensis subsp. nebraskensis, to a wider geographic range in the early 2000s compared with the late 1960s has generated concern about the possible role of seed transmission in long-distance spread. The objectives of this research were: (1) to determine the percentage of seed infection found in seed harvested from inoculated and noninoculated plants of hybrids that varied in resistance to Goss's wilt; and (2) to estimate the seed transmission rate from these infected seed lots. The greatest percent seed infection was detected in seed from inoculated plants of the most susceptible hybrid and the least in seed from the most resistant hybrid. Seed lots with seed infection that ranged from 3.6 to 37.0% were planted in three field and three greenhouse trials. A total of 12 seed transmission events (Goss's wilt symptomatic seedlings) were identified among 241,850 plants examined, for a seed transmission rate of 0.005%. When the seed transmission rate was recalculated to consider only the infected seed portion of each seed lot, the rate increased to 0.040% (12 events from 30,088 potentially infected plants). Based on the low seed transmission rate observed and previous research on disease spread from a point source, it seems unlikely that seed transmission could introduce enough inoculum to create a serious disease outbreak in a single growing season. However, risk of seed transmission is relevant for phytosanitary restrictions and preventing the introduction of the pathogen to new areas. To date, Goss's wilt has not been detected outside North America, and while the risk of seed transmission is very low, the risk is not zero. Fortunately, the presence of C. michiganensis subsp. nebraskensis in corn seed is readily detectable by established seed health testing methods.


Subject(s)
Micrococcaceae , Zea mays , North America , Plant Diseases , Seeds
18.
PLoS One ; 12(1): e0169950, 2017.
Article in English | MEDLINE | ID: mdl-28081566

ABSTRACT

Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Glycine max/genetics , Phytophthora/physiology , Base Sequence , Chromosome Mapping , DNA, Plant/isolation & purification , DNA, Plant/metabolism , Microsatellite Repeats/genetics , Molecular Sequence Data , Phenotype , Phytophthora/isolation & purification , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Proteins/genetics , Plant Roots/parasitology , Glycine max/growth & development , Glycine max/parasitology
19.
Plant Dis ; 101(1): 54-61, 2017 Jan.
Article in English | MEDLINE | ID: mdl-30682309

ABSTRACT

Goss's bacterial wilt and leaf blight, which is caused by Clavibacter michiganensis subsp. nebraskensis, is a disease of corn (Zea mays) that has been increasingly reported across the Midwest since its reemergence in western Nebraska, northeastern Colorado, and southeastern Wyoming during the 2006 growing season. The objective of this study was to identify environmental and agronomic factors contributing to the incidence of the disease across the Corn Belt through a multistate survey conducted during the 2011 growing season. Of the 2,400 surveys distributed throughout nine states, 486 were returned with corn leaf samples, of which 70% tested positive for C. michiganensis subsp. nebraskensis using an enzyme-linked immunosorbent assay. The agronomic data associated with each field were analyzed using classification and regression tree and random forest analyses to identify the factors that contributed most to Goss's bacterial wilt and leaf blight development. A χ2 test of independence was also done to determine relationships between certain variables and disease incidence. The two best predictors of Goss's bacterial wilt and leaf blight were hybrid resistance to Goss's bacterial wilt and leaf blight, as indicated by the seed companies' score and a planting population density >67,500 plants ha-1. Other important predictors included longitude, planting date, crop rotation, percent residue, yield history, tillage, and growth stage. Relationships between glyphosate applications, foliar fungicide applications, and corn rootworm beetle with samples testing positive for C. michiganensis subsp. nebraskensis were also detected. These data contribute to our understanding of factors that increase the risk of Goss's bacterial wilt and leaf blight, and should enable more effective management practices to be adopted or developed.

20.
Phytopathology ; 107(3): 293-304, 2017 03.
Article in English | MEDLINE | ID: mdl-27841963

ABSTRACT

Soybean (Glycine max (L.) Merr.) is produced across a vast swath of North America, with the greatest concentration in the Midwest. Root rot diseases and damping-off are a major concern for production, and the primary causal agents include oomycetes and fungi. In this study, we focused on examination of oomycete species distribution in this soybean production system and how environmental and soil (edaphic) factors correlate with oomycete community composition at early plant growth stages. Using a culture-based approach, 3,418 oomycete isolates were collected from 11 major soybean-producing states and most were identified to genus and species using the internal transcribed spacer region of the ribosomal DNA. Pythium was the predominant genus isolated and investigated in this study. An ecology approach was taken to understand the diversity and distribution of oomycete species across geographical locations of soybean production. Metadata associated with field sample locations were collected using geographical information systems. Operational taxonomic units (OTU) were used in this study to investigate diversity by location, with OTU being defined as isolate sequences with 97% identity to one another. The mean number of OTU ranged from 2.5 to 14 per field at the state level. Most OTU in this study, classified as Pythium clades, were present in each field in every state; however, major differences were observed in the relative abundance of each clade, which resulted in clustering of states in close proximity. Because there was similar community composition (presence or absence) but differences in OTU abundance by state, the ordination analysis did not show strong patterns of aggregation. Incorporation of 37 environmental and edaphic factors using vector-fitting and Mantel tests identified 15 factors that correlate with the community composition in this survey. Further investigation using redundancy analysis identified latitude, longitude, precipitation, and temperature as factors that contribute to the variability observed in community composition. Soil parameters such as clay content and electrical conductivity also affected distribution of oomycete species. The present study suggests that oomycete species composition across geographical locations of soybean production is affected by a combination of environmental and edaphic conditions. This knowledge provides the basis to understand the ecology and distribution of oomycete species, especially those able to cause diseases in soybean, providing cues to develop management strategies.


Subject(s)
Genetic Variation , Glycine max/parasitology , Oomycetes/isolation & purification , Plant Diseases/parasitology , Aphanomyces/classification , Aphanomyces/isolation & purification , Aphanomyces/pathogenicity , Ecology , Environment , High-Throughput Nucleotide Sequencing , Oomycetes/classification , Oomycetes/pathogenicity , Phytophthora/classification , Phytophthora/isolation & purification , Phytophthora/pathogenicity , Plant Diseases/prevention & control , Plant Roots/parasitology , Pythium/classification , Pythium/isolation & purification , Pythium/pathogenicity , Seedlings/parasitology , Seeds/parasitology , Sequence Analysis, DNA , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...