Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Headache Pain ; 22(1): 62, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193048

ABSTRACT

BACKGROUND: Circadian patterns of migraine attacks have been reported by patients but remain understudied. In animal models, circadian phases are generally not taken into consideration. In particular, rodents are nocturnal animals, yet they are most often tested during their inactive phase during the day. This study aims to test the validity of CGRP-induced behavioral changes in mice by comparing responses during the active and inactive phases. METHODS: Male and female mice of the outbred CD1 strain were administered vehicle (PBS) or CGRP (0.1 mg/kg, i.p.) to induce migraine-like symptoms. Animals were tested for activity (homecage movement and voluntary wheel running), light aversive behavior, and spontaneous pain at different times of the day and night. RESULTS: Peripheral administration of CGRP decreased the activity of mice during the first hour after administration, induced light aversive behavior, and spontaneous pain during that same period of time. Both phenotypes were observed no matter what time of the day or night they were assessed. CONCLUSIONS: A decrease in wheel activity is an additional clinically relevant phenotype observed in this model, which is reminiscent of the reduction in normal physical activity observed in migraine patients. The ability of peripheral CGRP to induce migraine-like symptoms in mice is independent of the phase of the circadian cycle. Therefore, preclinical assessment of migraine-like phenotypes can likely be done during the more convenient inactive phase of mice.


Subject(s)
Calcitonin Gene-Related Peptide , Migraine Disorders , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Migraine Disorders/chemically induced , Motor Activity
3.
Pain ; 159(11): 2306-2317, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29994995

ABSTRACT

Migraine is the third most common disease in the world (behind dental caries and tension-type headache) with an estimated global prevalence of 15%, yet its etiology remains poorly understood. Recent clinical trials have heralded the potential of therapeutic antibodies that block the actions of the neuropeptide calcitonin gene-related peptide (CGRP) or its receptor to prevent migraine. Calcitonin gene-related peptide is believed to contribute to trigeminal nerve hypersensitivity and photosensitivity in migraine, but a direct role in pain associated with migraine has not been established. In this study, we report that peripherally administered CGRP can act in a light-independent manner to produce spontaneous pain in mice that is manifested as a facial grimace. As an objective validation of the orbital tightening action unit of the grimace response, we developed a squint assay using a video-based measurement of the eyelid fissure, which confirmed a significant squint response after CGRP injection, both in complete darkness and very bright light. These indicators of discomfort were completely blocked by preadministration of a monoclonal anti-CGRP-blocking antibody. However, the nonsteroidal anti-inflammatory drug meloxicam failed to block the effect of CGRP. Interestingly, an apparent sex-specific response to treatment was observed with the antimigraine drug sumatriptan partially blocking the CGRP response in male, but not female mice. These results demonstrate that CGRP can induce spontaneous pain, even in the absence of light, and that the squint response provides an objective biomarker for CGRP-induced pain that is translatable to humans.


Subject(s)
Calcitonin Gene-Related Peptide/toxicity , Pain/chemically induced , Pain/physiopathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antibodies/therapeutic use , Calcitonin Gene-Related Peptide/immunology , Disease Models, Animal , Facial Pain/chemically induced , Facial Pain/drug therapy , Injections, Intraperitoneal , Locomotion/drug effects , Meloxicam , Mice , Mice, Inbred C57BL , Pain/drug therapy , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Sumatriptan/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...