Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
J Infect Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718217

ABSTRACT

BACKGROUND: The substantial risk for respiratory and invasive infections with Streptococcus pneumoniae (Spn) among people with HIV-1 (PWH) begins with asymptomatic colonization. The frequency of Spn colonization among U.S. adults with and without HIV-1 infection is not well-characterized in the conjugate vaccine era. METHODS: We determined Spn colonization frequency by culture and specific lytA gene QPCR and microbiota profile by 16S rRNA gene sequencing in nasopharyngeal (NP) and oropharyngeal (OP) DNA from 138 PWH and 93 control adults and associated clinical characteristics. RESULTS: The frequencies of Spn colonization among PWH and controls did not differ (11.6% vs 8.6%, respectively; p=0.46) using combined results of culture and PCR, independent of vaccination or behavioral risks. PWH showed altered microbiota composition (i.e., beta-diversity. NP: p=0.0028, OP: p=0.0098), decreased alpha-diversity (NP: p=0.024, OP: p=0.0045), and differences in the relative abundance of multiple bacterial taxa. Spn colonization was associated with altered beta-diversity in the NP (p=0.011), but not OP (p=0.21). CONCLUSIONS: Despite widespread conjugate vaccine and antiretroviral use, frequencies of Spn colonization among PWH and controls are currently consistent with those reported in the pre-conjugate era. The persistently increased risk of pneumococcal disease despite ART may relate to behavioral and immunologic variables other than colonization.

2.
Res Sq ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352510

ABSTRACT

HIV-exposed uninfected infants (HEU) have higher infectious morbidity than HIV-unexposed infants (HUU). HEU have multiple immune defects of unknown origin. We hypothesized that HEU have higher regulatory T cells (Treg) than HUU, which may dampen their immune defenses against pathogens. We compared 25 Treg subsets between HEU and HUU and sought the factors that may affect Treg frequencies. At birth, 3 Treg subsets, including CD4 + FOXP3 + and CD4 + FOXP3 + CD25+, had higher frequencies in 123 HEU than 117 HUU and 3 subsets were higher in HUU. At 28 and 62 weeks of life, 5 Treg subsets were higher in HEU, and none were higher in HUU. The frequencies of the discrepant Treg subsets correlated at birth with differential abundances of bacterial taxas in maternal gut microbiome and at subsequent visits in infant gut microbiomes. In vitro, bacterial taxa most abundant in HEU expanded Treg subsets with higher frequencies in HEU, recapitulating the in vivo observations. Other factors that correlated with increased Treg were low maternal CD4 + T cells in HEU at birth and male sex in HUU at 28 weeks. We conclude that maternal and infant gut dysbiosis are central to the Treg increase in HEU and may be targeted by mitigating interventions.

3.
J Clin Invest ; 134(4)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38113112

ABSTRACT

Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model, we identified alterations in tryptophan metabolism, and specifically indole, that correlated with disease. We demonstrated that both bacteria and dietary tryptophan were required for disease and that indole supplementation was sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1ß; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colonic lymphocytes to indole increased the expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a unique therapeutic pathway for RA and SpA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Microbiota , Mice , Humans , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Tryptophan , Arthritis, Rheumatoid/genetics , Collagen
4.
Front Pediatr ; 11: 1254329, 2023.
Article in English | MEDLINE | ID: mdl-38027267

ABSTRACT

Importance: Infants with symptomatic Gastroesophageal reflux are treated with pharmacological therapy that includes proton pump inhibitors (PPI) with clinical improvement. The alterations to gut microbiome profiles in comparison to infants without reflux is not known. Objective: To determine the effect of PPI therapy on gut bacterial richness, diversity, and proportions of specific taxa in infants when compared to infants not exposed to acid suppressive therapy. Design setting and participants: This cohort study was conducted at the Stony Brook Hospital in Stony Brook, NY between February 2016, and June 2019. Infants meeting inclusion criteria were enrolled in a consecutive fashion. Results: A total of 76 Infants were recruited and 60 were enrolled in the study, Twenty nine infants met clinical criteria for reflux and were treated with PPI therapy: median [IQR] gestation: 38.0 weeks [34.7-39.6 weeks]; median [IQR] birthweight: 2.95 Kg [2.2-3.4]; 14 [46.7%] male) and 29 infant were healthy controls median [IQR] gestation: 39.1 weeks [38-40 weeks]; median [IQR] birthweight: 3.3 Kg [2.2-3.4]; 17 [58.6%] male); 58 stool samples from 58 infants were analyzed. There were differences in Shannon diversity between the reflux and control groups. The reflux group that was exposed to PPI therapy had increased relative abundance of a diverse set of genera belonging to the phylum Firmicutes. On the other hand, the control group microbiota was dominated by Bifidobacterium, and a comparatively lower level of enrichment and abundance of microbial taxa was observed in this group of infants. Conclusions and relevance: We observed significant differences in both α- and ß-diversity of the microbiome, when the two groups of infants were compared. The microbiome in the reflux group had more bacterial taxa and the duration of PPIs exposure was clearly associated with the diversity and abundance of gut microbes. These findings suggest that PPI exposure among infants results in early enrichment of the intestinal microbiome.

5.
bioRxiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37873395

ABSTRACT

Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model we identify alterations in tryptophan metabolism, and specifically indole, that correlate with disease. We demonstrate that both bacteria and dietary tryptophan are required for disease, and indole supplementation is sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1ß; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colon lymphocytes to indole increased expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a novel therapeutic pathway for RA and SpA.

6.
BMC Microbiol ; 23(1): 312, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891457

ABSTRACT

BACKGROUND: Tobramycin inhalation solution (TIS) and chronic azithromycin (AZ) have known clinical benefits for children with CF, likely due to antimicrobial and anti-inflammatory activity. The effects of chronic AZ in combination with TIS on the airway microbiome have not been extensively investigated. Oropharyngeal swab samples were collected in the OPTIMIZE multicenter, randomized, placebo-controlled trial examining the addition of AZ to TIS in 198 children with CF and early P. aeruginosa infection. Bacterial small subunit rRNA gene community profiles were determined. The effects of TIS and AZ were assessed on oropharyngeal microbial diversity and composition to uncover whether effects on the bacterial community may be a mechanism of action related to the observed changes in clinical outcomes. RESULTS: Substantial changes in bacterial communities (total bacterial load, diversity and relative abundance of specific taxa) were observed by week 3 of TIS treatment for both the AZ and placebo groups. On average, these shifts were due to changes in non-traditional CF taxa that were not sustained at the later study visits (weeks 13 and 26). Bacterial community measures did not differ between the AZ and placebo groups. CONCLUSIONS: This study provides further evidence that the mechanism for AZ's effect on clinical outcomes is not due solely to action on airway microbial composition.


Subject(s)
Cystic Fibrosis , Microbiota , Pseudomonas Infections , Humans , Child , Azithromycin/pharmacology , Azithromycin/therapeutic use , Pseudomonas Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Administration, Inhalation , Pseudomonas aeruginosa/genetics , Tobramycin/pharmacology , Bacteria/genetics , Microbiota/genetics
7.
Res Sq ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37720032

ABSTRACT

Previous studies have identified significant alterations in intestinal carnitine metabolism in mice with collagen-induced arthritis (CIA), potentially linking bacterial dysbiosis with autoimmunity. Bacterial trimethylamine (TMA) lyases metabolize dietary carnitine to TMA, which is oxidized in the liver to trimethylamine-N-oxide (TMAO). TMAO is associated with inflammatory diseases, such as atherosclerosis, whose immunologic processes mirror that of rheumatoid arthritis (RA). Therefore, we investigated the possibility of ameliorating CIA by inhibiting TMA lyase activity using 3,3-dimethyl-1-butanol (DMB) or fluoromethylcholine (FMC). During CIA, mice were treated with 1% vol/vol DMB, 100mg/kg FMC, or vehicle. DMB-treated mice demonstrated significant (>50%) reduction in arthritis severity compared to FMC and vehicle-treated mice. However, in contrast to FMC, DMB treatment did not reduce cecal TMA nor circulating TMAO concentrations. Using gas chromatography, we confirmed the effect of DMB is independent of TMA lyase inhibition. Further, we identified a novel host-derived metabolite of DMB, 3,3-dimethyl-1-butyric acid (DMBut), which also significantly reduced disease and proinflammatory cytokines in CIA mice. Altogether, our study suggests that DMB the immunomodulatory activity of DMB and/or its metabolites are protective in CIA. Elucidating its target and mechanism of action may provide new directions for RA therapeutic development.

8.
Shock ; 60(4): 585-593, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37548929

ABSTRACT

ABSTRACT: The Earth's population is aging, and by 2050, one of six people will be 65 years or older. Therefore, proper treatment of injuries that disproportionately impact people of advanced age will be more important. Clinical studies reveal people 65 years or older account for 16.5% of all burn injuries and experience higher morbidity, including neurocognitive decline, and mortality that we and others believe are mediated, in part, by heightened intestinal permeability. Herein, we used our clinically relevant model of scald burn injury in young and aged mice to determine whether age and burn injury cooperate to induce heightened colonic damage, alterations to the fecal microbiome, and whether resultant changes in the microbiome correlate with neuroinflammation. We found that aged, burn-injured mice have an increase in colonic lymphoid aggregates, inflammation, and proinflammatory chemokine expression when compared with young groups and sham-injured aged mice. We then performed fecal microbiota sequencing and found a striking reduction in gut protective bacterial taxa, including Akkermansia , in the aged burn group compared with all other groups. This reduction correlated with an increase in serum fluorescein isothiocyanate-Dextran administered by gavage, indicating heightened intestinal permeability. Furthermore, loss of Akkermansia was highly correlated with increased messenger RNA expression of neuroinflammatory markers in the brain, including chemokine ligand 2, TNF-α, CXC motif ligand 1, and S100 calcium-binding protein A8. Finally, we discovered that postburn alterations in the microbiome correlated with measures of strength in all treatment groups, and those that performed better on the rotarod and hanging wire tests had higher abundance of Akkermansia than those that performed worse. Taken together, these findings indicate that loss of protective bacteria after burn injury in aged mice contributes to alterations in the colon, gut leakiness, neuroinflammation, and strength. Therefore, supplementation of protective bacteria, such as Akkermansia , after burn injury in aged patients may have therapeutic benefit.


Subject(s)
Burns , Microbiota , Humans , Aged , Neuroinflammatory Diseases , Dysbiosis/microbiology , Ligands , Burns/microbiology , Bacteria/genetics , Chemokines , Colon
9.
Genet Test Mol Biomarkers ; 27(7): 221-228, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37522794

ABSTRACT

Background: Otitis media (OM) is defined as middle ear (ME) inflammation that is usually due to infection. Globally, OM is a leading cause of hearing loss and is the most frequently diagnosed disease in young children. For OM, pediatric patients with Down syndrome (DS) demonstrate higher incidence rates, greater severity, and poorer outcomes. However, to date, no studies have investigated the bacterial profiles of children with DS and OM. Method: We aimed to determine if there are differences in composition of bacterial profiles or the relative abundance of individual taxa within the ME and nasopharyngeal (NP) microbiotas of pediatric OM patients with DS (n = 11) compared with those without DS (n = 84). We sequenced the 16S rRNA genes and analyzed the sequence data for diversity indices and relative abundance of individual taxa. Results: Individuals with DS demonstrated increased biodiversity in their ME and NP microbiotas. In children with OM, DS was associated with increased biodiversity and higher relative abundance of specific taxa in the ME. Conclusion: Our findings suggest that dysbioses in the NP of DS children contributes to their increased susceptibility to OM compared with controls. These findings suggest that DS influences regulation of the mucosal microbiota and contributes to OM pathology.


Subject(s)
Down Syndrome , Microbiota , Otitis Media , Child , Humans , Child, Preschool , RNA, Ribosomal, 16S/genetics , Down Syndrome/genetics , Otitis Media/genetics , Ear, Middle/microbiology , Ear, Middle/pathology , Microbiota/genetics
10.
J Nutr ; 153(9): 2612-2621, 2023 09.
Article in English | MEDLINE | ID: mdl-37506974

ABSTRACT

BACKGROUND: Evidence regarding the effects of infant feeding type (exclusive breastfeeding compared with exclusive formula feeding) on the gut microbiota and how it impacts infant growth status is limited. OBJECTIVES: The primary objective was to compare gut microbiota by feeding type and characterize the associations between gut microbiota and infant growth status. METHODS: Stool samples from healthy, full-term infants (4-5 mo-old) who were either exclusively breastfed (BF) or exclusively formula-fed (FF) in Denver, CO, United States were collected, and fecal 16S ribosomal ribonucleic acid gene-based profiling was conducted. Length and weight were measured at the time of stool collection. Length-for-age z-score, weight-for-age z-scores (WAZ), and weight-for-length z-scores were calculated based on the World Health Organization standards. Associations between gut microbial taxa and anthropometric z-scores were assessed by Spearman's rank correlation test. RESULTS: A total of 115 infants (BF n = 54; FF n = 61) were included in this study. Feeding type (BF compared with FF) was the most significant tested variable on gut microbiota composition (P < 1 × 10-6), followed by mode of delivery and race. Significant differences were observed in α-diversity, ß-diversity, and relative abundances of individual taxa between BF and FF. BF infants had lower α-diversity than FF infants. Abundances of Bifidobacterium and Lactobacillus were greater in the breastfeeding group. FF infants had a higher relative abundance of unclassified Ruminococcaceae (P < 0.001), which was associated with a higher WAZ (P < 0.001) and length-for-age z-score (P < 0.01). Lactobacillus was inversely associated with WAZ (P < 0.05). CONCLUSIONS: Feeding type is the main driver of gut microbiota differences in young infants. The gut microbiota differences based on feeding type (exclusive breast- or formula feeding) were associated with observed differences in growth status. This trial was registered at clinicaltrials.gov as NCT02142647, NCT01693406, and NCT04137445.


Subject(s)
Breast Feeding , Gastrointestinal Microbiome , Female , Humans , Infant , Milk, Human , Infant Formula , Infant Nutritional Physiological Phenomena , Feces/microbiology
11.
J Cyst Fibros ; 22(4): 644-651, 2023 07.
Article in English | MEDLINE | ID: mdl-37137746

ABSTRACT

BACKGROUND: Changes in upper airway microbiota may impact early disease manifestations in infants with cystic fibrosis (CF). To investigate early airway microbiota, the microbiota present in the oropharynx of CF infants over the first year of life was assessed along with the relationships between microbiota and growth, antibiotic use and other clinical variables. METHODS: Oropharyngeal (OP) swabs were collected longitudinally between 1 and 12 months of age from infants diagnosed with CF by newborn screen and enrolled in the Baby Observational and Nutrition Study (BONUS). DNA extraction was performed after enzymatic digestion of OP swabs. Total bacterial load was determined by qPCR and community composition assessed using 16S rRNA gene analysis (V1/V2 region). Changes in diversity with age were evaluated using mixed models with cubic B-splines. Associations between clinical variables and bacterial taxa were determined using a canonical correlation analysis. RESULTS: 1,052 OP swabs collected from 205 infants with CF were analyzed. Most infants (77%) received at least one course of antibiotics during the study and 131 OP swabs were collected while the infant was prescribed an antibiotic. Alpha diversity increased with age and was only marginally impacted by antibiotic use. Community composition was most highly correlated with age and was only moderately correlated with antibiotic exposure, feeding method and weight z-scores. Relative abundance of Streptococcus decreased while Neisseria and other taxa increased over the first year. CONCLUSIONS: Age was more influential on the oropharyngeal microbiota of infants with CF than clinical variables including antibiotics in the first year of life.


Subject(s)
Cystic Fibrosis , Microbiota , Infant, Newborn , Infant , Humans , Cystic Fibrosis/drug therapy , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Trachea , Anti-Bacterial Agents/therapeutic use
12.
J Am Assoc Lab Anim Sci ; 62(3): 212-221, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37072181

ABSTRACT

Washing and sanitizing rodent cage components requires costly equipment, significant personnel effort, and use of natural resources. The benchmark frequency for sanitation of individually ventilated caging (IVC) has traditionally been every 2 wk. In this study, we investigated the effects of extending this interval on the cage microenvironment, basic markers of health, and the gastrointestinal microbiota of rats. We compared our institutional standard of changing the sanitation interval for rat cage lids, box feeders, and enrichment devices from every 4 wk to an interval of 12 wk. The cage bottom and bedding continued to be changed every 2 wk for both groups. We hypothesized that we would find no significant difference between our current practice of 4 wks and continuous use for 12 wk. Our data showed that intracage ammonia levels remained below 5 ppm for most cages in both groups, with the exception of cages that experienced a cage flood. We found no significant difference between groups in bacterial colony forming units (CFU) on cage components. We used 3 novel methods of assessing cleanliness of enrichment devices and found no significant effect of continuous use for 12 wk on the number of CFU. In addition, we found no significant differences between groups for animal weight, routine blood work, or fecal and cecal microbiomes. These data indicate that a sanitation interval of up to 12 wk for components of rat IVC caging has no significant effects on the microenvironment or health of rats. Using the longer interval will improve efficiency, reduce the use of natural resources, and decrease costs while maintaining high-quality animal care.


Subject(s)
Gastrointestinal Microbiome , Rats , Animals , Ammonia , Sanitation , Housing, Animal , Animal Husbandry/methods
13.
mBio ; 14(3): e0005223, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37102874

ABSTRACT

Prior research has focused on host factors as mediators of exaggerated sepsis-associated morbidity and mortality in older adults. This focus on the host, however, has failed to identify therapies that improve sepsis outcomes in the elderly. We hypothesized that the increased susceptibility of the aging population to sepsis is not only a function of the host but also reflects longevity-associated changes in the virulence of gut pathobionts. We utilized two complementary models of gut microbiota-induced experimental sepsis to establish the aged gut microbiome as a key pathophysiologic driver of heightened disease severity. Further murine and human investigations into these polymicrobial bacterial communities demonstrated that age was associated with only subtle shifts in ecological composition but also an overabundance of genomic virulence factors that have functional consequence on host immune evasion. IMPORTANCE Older adults suffer more frequent and worse outcomes from sepsis, a critical illness secondary to infection. The reasons underlying this unique susceptibility are incompletely understood. Prior work in this area has focused on how the immune response changes with age. The current study, however, focuses instead on alterations in the community of bacteria that humans live with within their gut (i.e., the gut microbiome). The central concept of this paper is that the bacteria in our gut evolve along with the host and "age," making them more efficient at causing sepsis.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Humans , Animals , Mice , Aged , Gastrointestinal Microbiome/physiology , Virulence , Bacteria/genetics , Aging , Sepsis/microbiology
14.
Pediatr Res ; 94(2): 660-667, 2023 08.
Article in English | MEDLINE | ID: mdl-36750739

ABSTRACT

BACKGROUND: Tobacco smoke exposure increases the risk and severity of lower respiratory tract infections in children, yet the mechanisms remain unclear. We hypothesized that tobacco smoke exposure would modify the lower airway microbiome. METHODS: Secondary analysis of a multicenter cohort of 362 children between ages 31 days and 18 years mechanically ventilated for >72 h. Tracheal aspirates from 298 patients, collected within 24 h of intubation, were evaluated via 16 S ribosomal RNA sequencing. Smoke exposure was determined by creatinine corrected urine cotinine levels ≥30 µg/g. RESULTS: Patients had a median age of 16 (IQR 568) months. The most common admission diagnosis was lower respiratory tract infection (53%). Seventy-four (20%) patients were smoke exposed and exhibited decreased richness and Shannon diversity. Smoke exposed children had higher relative abundances of Serratia spp., Moraxella spp., Haemophilus spp., and Staphylococcus aureus. Differences were most notable in patients with bacterial and viral respiratory infections. There were no differences in development of acute respiratory distress syndrome, days of mechanical ventilation, ventilator free days at 28 days, length of stay, or mortality. CONCLUSION: Among critically ill children requiring prolonged mechanical ventilation, tobacco smoke exposure is associated with decreased richness and Shannon diversity and change in microbial communities. IMPACT: Tobacco smoke exposure is associated with changes in the lower airways microbiome but is not associated with clinical outcomes among critically ill pediatric patients requiring prolonged mechanical ventilation. This study is among the first to evaluate the impact of tobacco smoke exposure on the lower airway microbiome in children. This research helps elucidate the relationship between tobacco smoke exposure and the lower airway microbiome and may provide a possible mechanism by which tobacco smoke exposure increases the risk for poor outcomes in children.


Subject(s)
Microbiota , Respiratory Tract Infections , Tobacco Smoke Pollution , Humans , Child , Tobacco Smoke Pollution/adverse effects , Critical Illness , Respiration, Artificial/adverse effects , Smoke/adverse effects , Nicotiana , Cotinine
15.
bioRxiv ; 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36711447

ABSTRACT

Prior research has focused on host factors as mediators of exaggerated sepsis-associated morbidity and mortality in older adults. This focus on the host, however, has failed to identify therapies that improve sepsis outcomes in the elderly. We hypothesized that the increased susceptibility of the aging population to sepsis is not only a function of the host, but also reflects longevity-associated changes in the virulence of gut pathobionts. We utilized two complementary models of gut microbiota-induced experimental sepsis to establish the aged gut microbiome as a key pathophysiologic driver of heightened disease severity. Further murine and human investigations into these polymicrobial bacterial communities demonstrated that age was associated with only subtle shifts in ecological composition, but an overabundance of genomic virulence factors that have functional consequence on host immune evasion. One Sentence Summary: The severity of sepsis in the aged host is in part mediated by longevity-associated increases in gut microbial virulence.

16.
J Pediatr Gastroenterol Nutr ; 76(3): 347-354, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36525669

ABSTRACT

OBJECTIVE: The aim of the study was to determine the mucosal microbiota associated with eosinophilic esophagitis (EoE) and eosinophilic gastritis (EoG) in a geographically diverse cohort of patients compared to controls. METHODS: We conducted a prospective study of individuals with eosinophilic gastrointestinal disease (EGID) in the Consortium of Eosinophilic Gastrointestinal Disease Researchers, including pediatric and adult tertiary care centers. Eligible individuals had clinical data, mucosal biopsies, and stool collected. Total bacterial load was determined from mucosal biopsy samples by quantitative polymerase chain reaction (PCR). Community composition was determined by small subunit rRNA gene amplicons. RESULTS: One hundred thirty-nine mucosal biopsies were evaluated corresponding to 93 EoE, 17 EoG, and 29 control specimens (18 esophageal) from 10 sites across the United States. Dominant community members across disease activity differed significantly. When comparing EoE and EoG with controls, the dominant taxa in individuals with EGIDs was increased ( Streptococcus in esophagus; Prevotella in stomach). Specific taxa were associated with active disease for both EoE ( Streptococcus , Gemella ) and EoG ( Leptotrichia ), although highly individualized communities likely impacted statistical testing. Alpha diversity metrics were similar across groups, but with high variability among individuals. Stool analyses did not correlate with bacterial communities found in mucosal biopsy samples and was similar in patients and controls. CONCLUSIONS: Dominant community members ( Streptococcus for EoE, Prevotella for EoG) were different in the mucosal biopsies but not stool of individuals with EGIDs compared to controls; taxa associated with EGIDs were highly variable across individuals. Further study is needed to determine if therapeutic interventions contribute to the observed community differences.


Subject(s)
Eosinophilic Esophagitis , Microbiota , Adult , Humans , Child , Eosinophilic Esophagitis/pathology , Prospective Studies
17.
J Biol Chem ; 298(11): 102530, 2022 11.
Article in English | MEDLINE | ID: mdl-36209823

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease in the US, partly due to the increasing incidence of metabolic syndrome, obesity, and type 2 diabetes. The roles of bile acids and their receptors, such as the nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, on the development of NASH are not fully clear. C57BL/6J male mice fed a Western diet (WD) develop characteristics of NASH, allowing determination of the effects of FXR and TGR5 agonists on this disease. Here we show that the FXR-TGR5 dual agonist INT-767 prevents progression of WD-induced hepatic steatosis, inflammation, and fibrosis, as determined by histological and biochemical assays and novel label-free microscopy imaging techniques, including third harmonic generation, second harmonic generation, and fluorescence lifetime imaging microscopy. Furthermore, we show INT-767 decreases liver fatty acid synthesis and fatty acid and cholesterol uptake, as well as liver inflammation. INT-767 markedly changed bile acid composition in the liver and intestine, leading to notable decreases in the hydrophobicity index of bile acids, known to limit cholesterol and lipid absorption. In addition, INT-767 upregulated expression of liver p-AMPK, SIRT1, PGC-1α, and SIRT3, which are master regulators of mitochondrial function. Finally, we found INT-767 treatment reduced WD-induced dysbiosis of gut microbiota. Interestingly, the effects of INT-767 in attenuating NASH were absent in FXR-null mice, but still present in TGR5-null mice. Our findings support treatment and prevention protocols with the dual FXR-TGR5 agonist INT-767 arrest progression of WD-induced NASH in mice mediated by FXR-dependent, TGR5-independent mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Male , Mice , Bile Acids and Salts , Cholesterol/metabolism , Diabetes Mellitus, Type 2/complications , Diet, Western , Fatty Acids , Fibrosis , Inflammation/complications , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, G-Protein-Coupled/metabolism
18.
mBio ; 13(5): e0122922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36073815

ABSTRACT

HIV-exposed uninfected infants (HEU) have abnormal immunologic functions and increased infectious morbidity in the first 6 months of life, which gradually decreases thereafter. The mechanisms underlying HEU immune dysfunctions are unknown. We hypothesized that unique characteristics of the HEU gut microbiota associated with maternal HIV status may underlie the HEU immunologic dysfunctions. We characterized the infant gut, maternal gut, and breast milk microbiomes of mother-infant pairs, including 123 with HEU and 117 with HIV-uninfected infants (HUU), from South Africa. Pan-bacterial 16S rRNA gene sequencing was performed on (i) infant stool at 6, 28, and 62 weeks; (ii) maternal stool at delivery and 62 weeks; and (iii) breast milk at 6 weeks. Infant gut alpha and beta diversities were similar between groups. Microbial composition significantly differed, including 12 genera, 5 families and 1 phylum at 6 weeks; 12 genera and 2 families at 28 weeks; and 2 genera and 2 families at 62 weeks of life. Maternal gut microbiomes significantly differed in beta diversity and microbial composition, and breast milk microbiomes differed in microbial composition only. Infant gut microbiotas extensively overlapped with maternal gut and minimally with breast milk microbiotas. Nevertheless, exclusively breastfed HEU and HUU had less divergent microbiomes than nonexclusively breastfed infants. Feeding pattern and maternal gut microbiome imprint the HEU gut microbiome. Compared to HUU, the HEU gut microbiome prominently differs in early infancy, including increased abundance of taxa previously observed to be present in excess in adults with HIV. The HEU and HUU gut microbiome compositions converge over time, mirroring the kinetics of HEU infectious morbidity risk. IMPORTANCE HIV-exposed uninfected infants (HEU) are highly vulnerable to infections in the first 6 months of life, and this vulnerability decreases to the age of 24 months. Because the microbiome plays a critical role in the education of the infant immune system, which protects them against infections, we characterized the gut microbiomes of HEU and HIV-unexposed infants (HUU) in the first year of life. The HEU and HUU gut microbiomes showed prominent differences at 6 and 28 weeks of life but converged at 62 weeks of life, mirroring the time course of the HEU excess infectious morbidity and suggesting a potential association between the infant gut microbiome structure and susceptibility to infections. Infant gut microbiotas extensively overlapped with maternal gut and minimally with breast milk microbiotas. Moreover, exclusively breastfed HEU and HUU had less divergent microbiomes at 6 and 28 weeks than nonexclusively breastfed HEU and HUU. The factors that affect the HEU gut microbiome, maternal gut microbiome and exclusive breastfeeding, may be targeted by interventions.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Infant , Adult , Female , Humans , Child, Preschool , RNA, Ribosomal, 16S/genetics , HIV Infections/complications , Breast Feeding , Milk, Human
19.
Front Microbiol ; 13: 823757, 2022.
Article in English | MEDLINE | ID: mdl-35979501

ABSTRACT

Objective: To characterize the changes in gut microbiota during pregnancy and determine the effects of nutritional intervention on gut microbiota in women from sub-Saharan Africa (the Democratic Republic of the Congo, DRC), South Asia (India and Pakistan), and Central America (Guatemala). Methods: Pregnant women in the Women First (WF) Preconception Maternal Nutrition Trial were included in this analysis. Participants were randomized to receive a lipid-based micronutrient supplement either ≥3 months before pregnancy (Arm 1); started the same intervention late in the first trimester (Arm 2); or received no nutrition supplements besides those self-administered or prescribed through local health services (Arm 3). Stool and blood samples were collected during the first and third trimesters. Findings presented here include fecal 16S rRNA gene-based profiling and systemic and intestinal inflammatory biomarkers, including alpha (1)-acid glycoprotein (AGP), C-reactive protein (CRP), fecal myeloperoxidase (MPO), and calprotectin. Results: Stool samples were collected from 640 women (DRC, n = 157; India, n = 102; Guatemala, n = 276; and Pakistan, n = 105). Gut microbial community structure did not differ by intervention arm but changed significantly during pregnancy. Richness, a measure of alpha-diversity, decreased over pregnancy. Community composition (beta-diversity) also showed a significant change from first to third trimester in all four sites. Of the top 10 most abundant genera, unclassified Lachnospiraceae significantly decreased in Guatemala and unclassified Ruminococcaceae significantly decreased in Guatemala and DRC. The change in the overall community structure at the genus level was associated with a decrease in the abundances of certain genera with low heterogeneity among the four sites. Intervention arms were not significantly associated with inflammatory biomarkers at 12 or 34 weeks. AGP significantly decreased from 12 to 34 weeks of pregnancy, whereas CRP, MPO, and calprotectin did not significantly change over time. None of these biomarkers were significantly associated with the gut microbiota diversity. Conclusion: The longitudinal reduction of individual genera (both commensals and potential pathogens) and alpha-diversity among all sites were consistent and suggested that the effect of pregnancy on the maternal microbiota overrides other influencing factors, such as nutrition intervention, geographical location, diet, race, and other demographical variables.

20.
Front Physiol ; 13: 887077, 2022.
Article in English | MEDLINE | ID: mdl-35800349

ABSTRACT

Background: The gut microbiome is altered in obese adolescents with polycystic ovary syndrome (PCOS), and is associated with free testosterone, metabolic markers, and insulin resistance. Combined oral contraceptives (OCP) are a primary treatment for PCOS and decrease testosterone, but the effect on the serum metabolome or gut microbiome in obese adolescents with PCOS is unknown. Objective: Contrast gut microbiome profiles, targeted serum metabolomics, hormone levels, and metabolic measures in adolescents with PCOS and obesity with and without OCP treatment. Methods: Adolescent girls with obesity and PCOS underwent stool and fasting blood collection and MRI for hepatic fat fraction. Fecal bacteria were profiled by high-throughput 16S rRNA gene sequencing and fasting serum metabolomics performed with high resolution mass spectrometry. Groups were contrasted using t-tests and principle least squares discrimination analysis (PLS-DA). Associations between bacterial taxa, baseline metabolic measures, hormone levels and the metabolome were conducted using Spearman analysis. Analyses were adjusted for false discovery rate. Results: 29 adolescents with obesity [Untreated N = 21, 16 ± 1.2 years, BMI%ile 36.5 ± 3.0; OCP N = 8, 15.5 ± 0.9 years, BMI%ile 32.5 ± 3.9] participated. Of the untreated adolescents, N = 14 contributed serum for metabolomic analysis. Participants on OCP therapy had lower free testosterone and free androgen index (p < 0.001) and higher sex hormone binding globulin. There was no difference in measures of fasting glucose, insulin, lipids or HOMA-IR between groups. PLS-DA of serum metabolomics showed discrimination between the groups, secondary amino acid changes. Untreated and OCP had similar stool microbiome α-diversity based on evenness (p = 0.28), richness (p = 0.39), and Shannon diversity (p = 0.24) and global microbial composition (ß-diversity, p = 0.56). There were no differences in % relative abundance at any level. Bacterial α-diversity was negatively associated with serum long chain fatty acids and branched chain amino acids. A higher %relative abundance of family Ruminococcaceae was significantly associated with serum bile acids and HOMA-IR. Conclusion: Despite hormone and serum amino acid differences, girls treated with OCP had similar metabolic and gut microbiome profiles compared to the untreated PCOS group. The association between bacterial α-diversity, Ruminococcaceae, clinical markers and long chain fatty acids suggests a potential role of the gut microbiome in the pathogenesis of the metabolic comorbidities in PCOS.

SELECTION OF CITATIONS
SEARCH DETAIL
...