Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
bioRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38798577

ABSTRACT

The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis . Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. To demonstrate that this translates to more effective cure, we first confirmed the role of rifampin, with or without pyrazinamide, as essential to achieve effective bactericidal responses and sterilizing cure in the current standard of care regimen in chronically infected C3HeB/FeJ mice compared to BALB/c mice. Thus, demonstrating added value in testing clinically relevant regimens in murine models of increasing pathologic complexity. Next we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models including mice exhibiting advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.

2.
ACS Infect Dis ; 10(5): 1679-1695, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38581700

ABSTRACT

Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Oxazolidinones , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Oxazolidinones/pharmacology , Oxazolidinones/chemistry , Animals , Microbial Sensitivity Tests , Mice , Humans , Linezolid/pharmacology , Linezolid/chemistry , Drug Resistance, Bacterial , Mitochondria/drug effects , Mitochondria/metabolism
3.
JACC Case Rep ; 26: 102041, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38094175

ABSTRACT

We demonstrated a first-in-human case of successful antegrade dissection and re-entry using an image-guided re-entry catheter that enables real-time high-resolution visualization with graphical augmentation, and precision steering and advancement of a guidewire. The total time from over-the-wire deployment in the proximity of the distal cap to successful re-entry was <20 minutes. (Level of Difficulty: Advanced.).

4.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014249

ABSTRACT

The Nix-TB clinical trial evaluated a new 6-month regimen containing three-oral-drugs; bedaquiline (B), pretomanid (Pa) and linezolid (L) (BPaL regimen) for treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug resistant (MDR) or extensively drug resistant (XDR) TB participants were cured but many patients also developed severe adverse effects (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 (S) is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile but which lacks oral bioavailability. Here we hypothesize that inhaled spectinamide 1599, combined with BPa --BPaS regimen--has similar efficacy to that of BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the Balb/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effect in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL treatment also decreased myeloid to erythroid ratio and increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. During therapy both regimens improved the lung lesion burden, reduced neutrophil and cytotoxic T cells counts while increased the number of B and helper and regulatory T cells. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen that avoids L-associated AEs. IMPORTANCE: Tuberculosis (TB) is an airborne infectious disease that spreads via aerosols containing Mycobacterium tuberculosis (Mtb), the causative agent of TB. TB can be cured by administration of 3-4 drugs for 6-9 months but there are limited treatment options for patients infected with multidrug (MDR) and extensively resistant (XDR) strains of Mtb. BPaL is a new all-oral combination of drugs consisting of Bedaquiline (B), Pretomanid (Pa) and Linezolid (L). This regimen was able to cure ∼90% of MDR and XDR TB patients in clinical trials but many patients developed severe adverse effects (AEs) associated to the long-term administration of linezolid. We evaluated a new regimen in which Linezolid in the BPaL regimen was replaced with inhaled spectinamide 1599. In the current study, we demonstrate that 4-weeks of treatment with inhaled spectinamide 1599 in combination with Bedaquiline and Pretomanid has equivalent efficacy to the BPaL drug combination and avoids the L-associated-AEs.

5.
Antimicrob Agents Chemother ; 67(11): e0059723, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37791784

ABSTRACT

BTZ-043, a suicide inhibitor of the Mycobacterium tuberculosis cell wall synthesis decaprenylphosphoryl-beta-D-ribose 2' epimerase, is under clinical development as a potential new anti-tuberculosis agent. BTZ-043 is potent and bactericidal in vitro but has limited activity against non-growing bacilli in rabbit caseum. To better understand its behavior in vivo, BTZ-043 was evaluated for efficacy and spatial drug distribution as a single agent in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon Mycobacterium tuberculosis infection. BTZ-043 promoted significant reductions in lung and spleen bacterial burdens in the C3HeB/FeJ mouse model after 2 months of therapy. BTZ-043 penetrates cellular and necrotic lesions and was retained at levels above the serum-shifted minimal inhibitory concentration in caseum. The calculated rate of kill was found to be highest and dose-dependent during the second month of treatment. BTZ-043 treatment was associated with improved histology scores of pulmonary lesions, especially compared to control mice, which experienced advanced fulminant neutrophilic alveolitis in the absence of treatment. These positive treatment responses to BTZ-043 monotherapy in a mouse model of advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in the caseum, and its high potency and bactericidal nature at drug concentrations achieved in necrotic lesions.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mice , Animals , Rabbits , Mice, Inbred C3H , Tuberculosis/drug therapy , Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mice, Inbred Strains
6.
mBio ; : e0236323, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37905920

ABSTRACT

To address the ongoing global tuberculosis crisis, there is a need for shorter, more effective treatments. A major reason why tuberculosis requires prolonged treatment is that, following a short initial phase of rapid killing, the residual Mycobacterium tuberculosis withstands drug killing. Because existing methods lack sensitivity to quantify low-abundance mycobacterial RNA in drug-treated animals, cellular adaptations of drug-exposed bacterial phenotypes in vivo remain poorly understood. Here, we used a novel RNA-seq method called SEARCH-TB to elucidate the Mycobacterium tuberculosis transcriptome in mice treated for up to 28 days with standard doses of isoniazid, rifampin, pyrazinamide, and ethambutol. We compared murine results with in vitro SEARCH-TB results during exposure to the same regimen. Treatment suppressed genes associated with growth, transcription, translation, synthesis of rRNA proteins, and immunogenic secretory peptides. Bacteria that survived prolonged treatment appeared to transition from ATP-maximizing respiration toward lower-efficiency pathways and showed modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pump expression. Although the pre-treatment in vivo and in vitro transcriptomes differed profoundly, genes differentially expressed following treatment in vivo and in vitro were similar, with differences likely attributable to immunity and drug pharmacokinetics in mice. These results reveal cellular adaptations of Mycobacterium tuberculosis that withstand prolonged drug exposure in vivo, demonstrating proof of concept that SEARCH-TB is a highly granular pharmacodynamic readout. The surprising finding that differential expression is concordant in vivo and in vitro suggests that insights from transcriptional analyses in vitro may translate to the mouse. IMPORTANCE A major reason that curing tuberculosis requires prolonged treatment is that drug exposure changes bacterial phenotypes. The physiologic adaptations of Mycobacterium tuberculosis that survive drug exposure in vivo have been obscure due to low sensitivity of existing methods in drug-treated animals. Using the novel SEARCH-TB RNA-seq platform, we elucidated Mycobacterium tuberculosis phenotypes in mice treated for with the global standard 4-drug regimen and compared them with the effect of the same regimen in vitro. This first view of the transcriptome of the minority Mycobacterium tuberculosis population that withstands treatment in vivo reveals adaptation of a broad range of cellular processes, including a shift in metabolism and cell wall modification. Surprisingly, the change in gene expression induced by treatment in vivo and in vitro was largely similar. This apparent "portability" from in vitro to the mouse provides important new context for in vitro transcriptional analyses that may support early preclinical drug evaluation.

7.
Antimicrob Agents Chemother ; 67(9): e0028423, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37565762

ABSTRACT

Tuberculosis lung lesions are complex and harbor heterogeneous microenvironments that influence antibiotic effectiveness. Major strides have been made recently in understanding drug pharmacokinetics in pulmonary lesions, but the bacterial phenotypes that arise under these conditions and their contribution to drug tolerance are poorly understood. A pharmacodynamic marker called the RS ratio® quantifies ongoing rRNA synthesis based on the abundance of newly synthesized precursor rRNA relative to mature structural rRNA. Application of the RS ratio in the C3HeB/FeJ mouse model demonstrated that Mycobacterium tuberculosis populations residing in different tissue microenvironments are phenotypically distinct and respond differently to drug treatment with rifampin, isoniazid, or bedaquiline. This work provides a foundational basis required to address how anatomic and pathologic microenvironmental niches may contribute to long treatment duration and drug tolerance during the treatment of human tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Mice , Animals , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mice, Inbred C3H , Tuberculosis/drug therapy , Lung/microbiology , Mice, Inbred Strains
8.
Pharmaceutics ; 15(6)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37376207

ABSTRACT

Spectinamides 1599 and 1810 are lead spectinamide compounds currently under preclinical development to treat multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. These compounds have previously been tested at various combinations of dose level, dosing frequency, and route of administration in mouse models of Mycobacterium tuberculosis (Mtb) infection and in healthy animals. Physiologically based pharmacokinetic (PBPK) modeling allows the prediction of the pharmacokinetics of candidate drugs in organs/tissues of interest and extrapolation of their disposition across different species. Here, we have built, qualified, and refined a minimalistic PBPK model that can describe and predict the pharmacokinetics of spectinamides in various tissues, especially those relevant to Mtb infection. The model was expanded and qualified for multiple dose levels, dosing regimens, routes of administration, and various species. The model predictions in mice (healthy and infected) and rats were in reasonable agreement with experimental data, and all predicted AUCs in plasma and tissues met the two-fold acceptance criteria relative to observations. To further explore the distribution of spectinamide 1599 within granuloma substructures as encountered in tuberculosis, we utilized the Simcyp granuloma model combined with model predictions in our PBPK model. Simulation results suggest substantial exposure in all lesion substructures, with particularly high exposure in the rim area and macrophages. The developed model may be leveraged as an effective tool in identifying optimal dose levels and dosing regimens of spectinamides for further preclinical and clinical development.

9.
JACC Case Rep ; 14: 101828, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37152700

ABSTRACT

A 74-year-old woman with a history aortic stenosis with prior transcatheter aortic valve replacement presented with non-ST-segment elevation myocardial infarction secondary to a delayed left coronary sinus obstruction. With physiology and intravascular ultrasound guidance, the patient was treated with stents through the valve struts and to the left main. (Level of Difficulty: Intermediate.).

10.
Tuberculosis (Edinb) ; 140: 102342, 2023 05.
Article in English | MEDLINE | ID: mdl-37120915

ABSTRACT

Spectinamides are a novel series of spectinomycin analogs being developed for the treatment of tuberculosis. The preclinical lead spectinamide 1599 is an antituberculosis drug that possesses robust in vivo efficacy, good pharmacokinetic properties, and excellent safety profiles in rodents. In individuals infected with Mycobacterium tuberculosis or Mycobacterium bovis, causative agents of tuberculosis, the host immune system is capable of restraining these mycobacteria within granulomatous lesions. The harsh microenvironmental conditions of these granuloma lead to phenotypic transformation of mycobacteria. Phenotypically transformed bacteria display suboptimal growth, or complete growth arrest and are frequently associated with drug tolerance. Here we quantified the effect of spectinamide 1599 on log-phase and phenotypically tolerant isoforms of Mycobacterium bovis BCG using various in vitro approaches as a first indicator of spectinamide 1599 activity against various mycobacterial isoforms. We also used the hollow fiber infection model to establish time-kill curves and deployed pharmacokinetic/pharmacodynamic modeling to characterize the activity differences of spectinamide 1599 towards the different phenotypic subpopulations. Our results indicate that spectinamide 1599 is more efficacious against log phase bacteria when compared to its activity against other phenotypically tolerant forms such as acid phase bacteria and hypoxic phase bacteria, a behavior similar to the established antituberculosis drug isoniazid.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humans , Spectinomycin , Mycobacterium tuberculosis/genetics , Antitubercular Agents/therapeutic use
11.
bioRxiv ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36945388

ABSTRACT

Transcriptome evaluation of Mycobacterium tuberculosis in the lungs of laboratory animals during long-term treatment has been limited by extremely low abundance of bacterial mRNA relative to eukaryotic RNA. Here we report a targeted amplification RNA sequencing method called SEARCH-TB. After confirming that SEARCH-TB recapitulates conventional RNA-seq in vitro, we applied SEARCH-TB to Mycobacterium tuberculosis-infected BALB/c mice treated for up to 28 days with the global standard isoniazid, rifampin, pyrazinamide, and ethambutol regimen. We compared results in mice with 8-day exposure to the same regimen in vitro. After treatment of mice for 28 days, SEARCH-TB suggested broad suppression of genes associated with bacterial growth, transcription, translation, synthesis of rRNA proteins and immunogenic secretory peptides. Adaptation of drug-stressed Mycobacterium tuberculosis appeared to include a metabolic transition from ATP-maximizing respiration towards lower-efficiency pathways, modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pumps expression. Despite markedly different expression at pre-treatment baseline, murine and in vitro samples had broadly similar transcriptional change during treatment. The differences observed likely indicate the importance of immunity and pharmacokinetics in the mouse. By elucidating the long-term effect of tuberculosis treatment on bacterial cellular processes in vivo, SEARCH-TB represents a highly granular pharmacodynamic monitoring tool with potential to enhance evaluation of new regimens and thereby accelerate progress towards a new generation of more effective tuberculosis treatment.

12.
Antimicrob Agents Chemother ; 67(1): e0148322, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36622159

ABSTRACT

The sigmoid Emax model was used to describe the rRNA synthesis ratio (RS ratio) response of Mycobacterium tuberculosis to antimicrobial concentration. RS-Emax measures the maximal ability of a drug to inhibit the RS ratio and can be used to rank-order drugs based on their RS ratio effect. RS-EC90 is the concentration needed to achieve 90% of the RS-Emax, which may guide dose selection to achieve a maximal RS ratio effect in vivo.


Subject(s)
Anti-Infective Agents , Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Benchmarking , Microbial Sensitivity Tests , Tuberculosis/drug therapy , Tuberculosis/microbiology , Anti-Infective Agents/pharmacology , Mycobacterium tuberculosis/genetics
13.
Ibis (Lond 1859) ; 165(1): 161-178, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36589762

ABSTRACT

Reproduction in procellariiform birds is characterized by a single egg clutch, slow development, a long breeding season and obligate biparental care. Female Leach's Storm Petrels Hydrobates leucorhous, nearly monomorphic members of this order, produce eggs that are between 20 and 25% of adult body weight. We tested whether female foraging behaviour differs from male foraging behaviour during the ~ 44-day incubation period across seven breeding colonies in the Northwest Atlantic. Over six breeding seasons, we used a combination of Global Positioning System and Global Location Sensor devices to measure characteristics of individual foraging trips during the incubation period. Females travelled significantly greater distances and went farther from the breeding colony than did males on individual foraging trips. For both sexes, the longer the foraging trip, the greater the distance. Independent of trip duration, females travelled farther, and spent a greater proportion of their foraging trips prospecting widely as defined by behavioural categories derived from a Hidden Markov Model. For both sexes, trip duration decreased with date. Sex differences in these foraging metrics were apparently not a consequence of morphological differences or spatial segregation. Our data are consistent with the idea that female foraging strategies differed from male foraging strategies during incubation in ways that would be expected if females were still compensating for egg formation.

14.
Mov Ecol ; 10(1): 45, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329536

ABSTRACT

BACKGROUND: Homeothermic marine animals in Polar Regions face an energetic bottleneck in winter. The challenges of short days and cold temperatures are exacerbated for flying seabirds with small body size and limited fat stores. We use biologging approaches to examine how habitat, weather, and moon illumination influence behaviour and energetics of a marine bird species, thick-billed murres (Uria lomvia). METHODS: We used temperature-depth-light recorders to examine strategies murres use to survive winter in the Northwest Atlantic, where contrasting currents create two distinct marine habitats: cold (-0.1 ± 1.2 °C), shallower water along the Labrador Shelf and warmer (3.1 ± 0.3 °C), deep water in the Labrador Basin. RESULTS: In the cold shelf water, murres used a high-energy strategy, with more flying and less diving each day, resulting in high daily energy expenditure and also high apparent energy intake; this strategy was most evident in early winter when day lengths were shortest. By contrast, murres in warmer basin water employed a low-energy strategy, with less time flying and more time diving under low light conditions (nautical twilight and night). In warmer basin water, murres increased diving at night when the moon was more illuminated, likely taking advantage of diel vertically migrating prey. In warmer basin water, murres dove more at night and foraging efficiency increased under negative North Atlantic Oscillation (calmer ocean conditions). CONCLUSIONS: The proximity of two distinct marine habitats in this region allows individuals from a single species to use dual (low-energy/high-energy) strategies to overcome winter energy bottlenecks.

15.
Sci Total Environ ; 850: 157732, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35931163

ABSTRACT

Species and populations with greater cognitive performance are more successful at adapting to changing habitats. Accordingly, urban species and populations often outperform their rural counterparts on problem-solving tests. Paradoxically, urban foraging also might be detrimental to the development and integrity of animals' brains because anthropogenic foods often lack essential nutrients such as the long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are important for cognitive performance in mammals and possibly birds. We tested whether urbanization or consumption of EPA and DHA are associated with problem-solving abilities in ring-billed gulls, a seabird that historically exploited marine environments rich in omega-3 fatty acids but now also thrives in urban centres. Using incubating adults nesting across a range of rural to urban colonies with equal access to the ocean, we tested whether urban gulls preferentially consumed anthropogenic food while rural nesters relied on marine organisms. As we expected individual variation in foraging habits within nesting location, we characterized each captured gulls' diet using stable isotope and fatty acid analyses of their red blood cells. To test their problem-solving abilities, we presented the sampled birds with a horizontal rendition of the string-pull test, a foraging puzzle often used in animal cognitive studies. The isotopic and fatty acid profiles of urban nesters indicated a diet comprising primarily anthropogenic food, whereas the profiles of rural nesters indicated a high reliance on marine organisms. Despite the gulls' degree of access to urban foraging habitat not predicting solving success, birds with biochemical profiles reflecting anthropogenic food (less DHA and a higher carbon-13 ratio in their red blood cells) had a greater probability of solving the string-pull test. These results suggest that experience foraging on anthropogenic food is the main explanatory factor leading to successful problem-solving, while regular consumption of omega-3s during incubation appears inconsequential.


Subject(s)
Charadriiformes , Docosahexaenoic Acids , Animals , Aquatic Organisms , Birds , Ecosystem , Eicosapentaenoic Acid , Mammals
16.
Chemosphere ; 304: 135279, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35691403

ABSTRACT

Seabirds are important biovectors of contaminants, like mercury, moving them from marine to terrestrial environments around breeding colonies. This transfer of materials can have marked impacts on receiving environments and biota. Less is known about biotransport of contaminants by generalist seabirds that exploit anthropogenic wastes compared to other seabird species. In this study, we measured total mercury (THg) in O-horizon soils at four herring gull (Larus smithsoniansus) breeding colonies in southern Nova Scotia, Canada. At colonies with dry substrate, THg was significantly higher in soils collected from gull colonies compared to nearby reference soils with no nesting gulls. Further, THg was distinct in soils among study colonies and was likely influenced by biotransport from other nesting seabird species, most notably Leach's storm-petrels (Hydrobates leucorhous). Our research suggests gulls that scavenge on anthropogenic wastes at local industrial sites are biovectors moving THg acquired at these sites to their colonies and may increase the spatial footprint of contaminants from these industries.


Subject(s)
Charadriiformes , Mercury , Animals , Birds , Canada , Environmental Monitoring , Industrial Waste , Mercury/analysis , Nova Scotia , Soil
17.
Antimicrob Agents Chemother ; 66(6): e0013222, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35607978

ABSTRACT

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC50] = 0.07 µM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs. In addition, it has shown efficacy in different mouse models of tuberculosis (TB) and has an adequate safety profile in two preclinical species. These features indicate a compound with a novel mode of action, although still not fully defined, that is effective against both multidrug-resistant (MDR) or extensively drug-resistant (XDR) and drug-sensitive (DS) M. tuberculosis with the potential to shorten the duration of treatment in novel combination drug regimens. (This study has been registered at ClinicalTrials.gov under identifier NCT04472897).


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Macrophages , Mice , Microbial Sensitivity Tests , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy
18.
Glob Chang Biol ; 28(14): 4292-4307, 2022 07.
Article in English | MEDLINE | ID: mdl-35320599

ABSTRACT

Seabird population size is intimately linked to the physical, chemical, and biological processes of the oceans. Yet, the overall effects of long-term changes in ocean dynamics on seabird colonies are difficult to quantify. Here, we used dated lake sediments to reconstruct ~10,000-years of seabird dynamics in the Northwest Atlantic to determine the influences of Holocene-scale climatic oscillations on colony size. On Baccalieu Island (Newfoundland and Labrador, Canada)-where the world's largest colony of Leach's storm-petrel (Hydrobates leucorhous Vieillot 1818) currently breeds-our data track seabird colony growth in response to warming during the Holocene Thermal Maximum (ca. 9000 to 6000 BP). From ca. 5200 BP to the onset of the Little Ice Age (ca. 550 BP), changes in colony size were correlated to variations in the North Atlantic Oscillation (NAO). By contrasting the seabird trends from Baccalieu Island to millennial-scale changes of storm-petrel populations from Grand Colombier Island (an island in the Northwest Atlantic that is subjected a to different ocean climate), we infer that changes in NAO influenced the ocean circulation, which translated into, among many things, changes in pycnocline depth across the Northwest Atlantic basin where the storm-petrels feed. We hypothesize that the depth of the pycnocline is likely a strong bottom-up control on surface-feeding storm-petrels through its influence on prey accessibility. Since the Little Ice Age (LIA), the effects of ocean dynamics on seabird colony size have been altered by anthropogenic impacts. Subsequently, the colony on Baccalieu Island grew at an unprecedented rate to become the world's largest resulting from favorable conditions linked to climate warming, increased vegetation (thereby nesting habitat), and attraction of recruits from other colonies that are now in decline. We show that although ocean dynamics were an important driver of seabird colony dynamics, its recent influence has been modified by human interference.


Subject(s)
Birds , Ecosystem , Animals , Birds/physiology , Canada , Humans , Lakes , Population Density
19.
Antimicrob Agents Chemother ; 66(4): e0219221, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35266826

ABSTRACT

Described here is a series of spiropyrimidinetrione (SPT) compounds with activity against Mycobacterium tuberculosis through inhibition of DNA gyrase. The SPT class operates via a novel mode of inhibition, which involves Mg2+-independent stabilization of the DNA cleavage complex with DNA gyrase and is thereby not cross-resistant with other DNA gyrase-inhibiting antibacterials, including fluoroquinolones. Compound 22 from the series was profiled broadly and showed in vitro cidality as well as intracellular activity against M. tuberculosis in macrophages. Evidence for the DNA gyrase mode of action was supported by inhibition of the target in a DNA supercoiling assay and elicitation of an SOS response seen in a recA reporter strain of M. tuberculosis. Pharmacokinetic properties of 22 supported evaluation of efficacy in an acute model of M. tuberculosis infection, where modest reduction in CFU numbers was seen. This work offers promise for deriving a novel drug class of tuberculosis agent without preexisting clinical resistance.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , DNA Gyrase/genetics , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Humans , Topoisomerase II Inhibitors/pharmacology , Tuberculosis/drug therapy
20.
Antimicrob Agents Chemother ; 66(4): e0231021, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35311519

ABSTRACT

Murine tuberculosis drug efficacy studies have historically monitored bacterial burden based on CFU of Mycobacterium tuberculosis in lung homogenate. In an alternative approach, a recently described molecular pharmacodynamic marker called the RS ratio quantifies drug effect on a fundamental cellular process, ongoing rRNA synthesis. Here, we evaluated the ability of different pharmacodynamic markers to distinguish between treatments in three BALB/c mouse experiments at two institutions. We confirmed that different pharmacodynamic markers measure distinct biological responses. We found that a combination of pharmacodynamic markers distinguishes between treatments better than any single marker. The combination of the RS ratio with CFU showed the greatest ability to recapitulate the rank order of regimen treatment-shortening activity, providing proof of concept that simultaneous assessment of pharmacodynamic markers measuring different properties will enhance insight gained from animal models and accelerate development of new combination regimens. These results suggest potential for a new era in which antimicrobial therapies are evaluated not only on culture-based measures of bacterial burden but also on molecular assays that indicate how drugs impact the physiological state of the pathogen.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Disease Models, Animal , Drug Therapy, Combination , Lung/microbiology , Mice , Mice, Inbred BALB C , Tuberculosis/drug therapy , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...