Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979315

ABSTRACT

The opportunistic pathogen Pseudomonas aeruginosa causes debilitating lung infections in people with cystic fibrosis, as well as eye, burn, and wound infections in otherwise immunocompetent individuals. Many of P. aeruginosa's virulence factors are regulated by environmental changes associated with human infection, such as a change in temperature from ambient to human body temperature. One such virulence factor is protease IV (PIV). Interestingly, piv expression is higher at ambient temperatures (22-28°C) compared to human body temperature (37°C). We found that piv expression was thermoregulated at stationary phase, but not exponential phase, and that piv is thermoregulated at the level of transcription. Protein levels of known transcriptional regulators of piv, the quorum sensing regulator LasR and the gene-silencing histone nucleoid silencing proteins MvaT/MvaU, were not thermoregulated. Using a transcriptional reporter for piv, we show that LasR activates piv expression at stationary phase at 25°C but not 37°C, while MvaT/MvaU are not required for piv thermoregulation. We also identified a las box in the piv promoter, which is important for piv thermoregulation. We propose that LasR directly regulates piv at stationary phase at 25°C but has a negligible impact at 37°C. Here, we show that piv is uniquely regulated by LasR in a temperature-dependent manner. Our findings suggest that the LasRI quorum sensing regulon of P. aeruginosa may not be fully characterized and that growth at non-standard laboratory conditions such as lower temperatures could reveal previously unrecognized quorum sensing regulated genes.

2.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Article in English | MEDLINE | ID: mdl-36176077

ABSTRACT

It is possible to create illusions of limb movements using vibrations over the skin. If a muscle is vibrated it can feel as if the limb is moving while it remains still. These illusions have been studied for decades but it is not yet entirely clear how to create them effectively and repeatedly. In this study, three parameters were varied; the frequency of the vibration, the stimulation site and the arm position. A closed loop control of the vibration frequency was used to ensure a fixed frequency over the stimulation time and across the participants. The experiment included twenty-five able-bodied participants (mean age 32±7 years, 9 females). A hanging arm position was introduced with the aim to increase the success rate of illusions compared to other studies. Twenty-four participants felt an illusion across all scenarios. The results highlight that tactile feedback affects the illusion.


Subject(s)
Illusions , Adult , Feedback , Female , Humans , Illusions/physiology , Movement/physiology , Proprioception/physiology , Vibration
3.
Sci Rep ; 12(1): 4874, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35318356

ABSTRACT

The ever-increasing demand for artificial intelligence (AI) systems is underlining a significant requirement for new, AI-optimised hardware. Neuromorphic (brain-like) processors are one highly-promising solution, with photonic-enabled realizations receiving increasing attention. Among these, approaches based upon vertical cavity surface emitting lasers (VCSELs) are attracting interest given their favourable attributes and mature technology. Here, we demonstrate a hardware-friendly neuromorphic photonic spike processor, using a single VCSEL, for all-optical image edge-feature detection. This exploits the ability of a VCSEL-based photonic neuron to integrate temporally-encoded pixel data at high speed; and fire fast (100 ps-long) optical spikes upon detecting desired image features. Furthermore, the photonic system is combined with a software-implemented spiking neural network yielding a full platform for complex image classification tasks. This work therefore highlights the potential of VCSEL-based platforms for novel, ultrafast, all-optical neuromorphic processors interfacing with current computation and communication systems for use in future light-enabled AI and computer vision functionalities.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Neurons/physiology , Optics and Photonics , Photons
4.
J Am Soc Nephrol ; 33(3): 584-600, 2022 03.
Article in English | MEDLINE | ID: mdl-35064051

ABSTRACT

BACKGROUND: Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) gene cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine (K) Kinase 4 (WNK4), inappropriately activating sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK), which then phosphorylates and hyperactivates the Na+Cl- cotransporter (NCC). The precise mechanism by which CUL3-Δ9 causes FHHt is unclear. We tested the hypothesis that reduced abundance of CUL3 and of Kelch-like 3 (KLHL3), the CUL3 substrate adaptor for WNK4, is mechanistically important. Because JAB1, an enzyme that inhibits CUL3 activity by removing the ubiquitin-like protein NEDD8, cannot interact with CUL3-Δ9, we also determined whether Jab1 disruption mimicked the effects of CUL3-Δ9 expression. METHODS: We used an inducible renal tubule-specific system to generate several mouse models expressing CUL3-Δ9, mice heterozygous for both CUL3 and KLHL3 (Cul3+/-/Klhl3+/- ), and mice with short-term Jab1 disruption (to avoid renal injury associated with long-term disruption). RESULTS: Renal KLHL3 was higher in Cul3-/- mice, but lower in Cul3-/-/Δ9 mice and in the Cul3+/-/Δ9 FHHt model, suggesting KLHL3 is a target for both WT and mutant CUL3. Cul3+/-/Klhl3+/- mice displayed increased WNK4-SPAK activation and phospho-NCC abundance and an FHHt-like phenotype with increased plasma [K+] and salt-sensitive blood pressure. Short-term Jab1 disruption in mice lowered the abundance of CUL3 and KLHL3 and increased the abundance of WNK4 and phospho-NCC. CONCLUSIONS: Jab1-/- mice and Cul3+/-/Klhl3+/- mice recapitulated the effects of CUL3-Δ9 expression on WNK4-SPAK-NCC. Our data suggest degradation of both KLHL3 and CUL3 plays a central mechanistic role in CUL3-Δ9-mediated FHHt.


Subject(s)
Cullin Proteins , Hypertension , Pseudohypoaldosteronism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cullin Proteins/genetics , Cullin Proteins/metabolism , Female , Humans , Hypertension/genetics , Male , Mice , Microfilament Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/metabolism , Solute Carrier Family 12, Member 3/metabolism
5.
Am J Physiol Renal Physiol ; 321(1): F69-F81, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34056928

ABSTRACT

The renal nephron consists of a series of distinct cell types that function in concert to maintain fluid and electrolyte balance and blood pressure. The renin-angiotensin system (RAS) is central to Na+ and volume balance. We aimed to determine how loss of angiotensin II signaling in the proximal tubule (PT), which reabsorbs the bulk of filtered Na+ and volume, impacts solute transport throughout the nephron. We hypothesized that PT renin-angiotensin system disruption would not only depress PT Na+ transporters but also impact downstream Na+ transporters. Using a mouse model in which the angiotensin type 1a receptor (AT1aR) is deleted specifically within the PT (AT1aR PTKO), we profiled the abundance of Na+ transporters, channels, and claudins along the nephron. Absence of PT AT1aR signaling was associated with lower abundance of PT transporters (Na+/H+ exchanger isoform 3, electrogenic Na+-bicarbonate cotransporter 1, and claudin 2) as well as lower abundance of downstream transporters (total and phosphorylated Na+-K+-2Cl- cotransporter, medullary Na+-K+-ATPase, phosphorylated NaCl cotransporter, and claudin 7) versus controls. However, transport activities of Na+-K+-2Cl- cotransporter and NaCl cotransporter (assessed with diuretics) were similar between groups in order to maintain electrolyte balance. Together, these results demonstrate the primary impact of angiotensin II regulation on Na+ reabsorption in the PT at baseline and the associated influence on downstream Na+ transporters, highlighting the ability of the nephron to integrate Na+ transport along the nephron to maintain homeostasis.NEW & NOTEWORTHY Our study defines a novel role for proximal tubule angiotensin receptors in regulating the abundance of Na+ transporters throughout the nephron, thereby contributing to the integrated control of fluid balance in vivo.


Subject(s)
Angiotensin II/pharmacology , Membrane Transport Proteins/metabolism , Nephrons/metabolism , Solute Carrier Family 12, Member 3/metabolism , Animals , Kidney/metabolism , Natriuresis/drug effects , Sodium-Hydrogen Exchangers/metabolism
6.
Opt Express ; 28(25): 37526-37537, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379585

ABSTRACT

We report both experimentally and in theory on the detection of edge features in digital images with an artificial optical spiking neuron based on a vertical-cavity surface-emitting laser (VCSEL). The latter delivers fast (< 100 ps) neuron-like optical spikes in response to optical inputs pre-processed using convolution techniques; hence representing image feature information with a spiking data output directly in the optical domain. The proposed technique is able to detect target edges of different directionalities in digital images by applying individual kernel operators and can achieve complete image edge detection using gradient magnitude. Importantly, the neuromorphic (brain-like) spiking edge detection of this work uses commercially sourced VCSELs exhibiting responses at sub-nanosecond rates (many orders of magnitude faster than biological neurons) and operating at the important telecom wavelength of 1300 nm; hence making our approach compatible with optical communication and data-centre technologies.


Subject(s)
Lasers , Neural Networks, Computer , Optics and Photonics/instrumentation , Photometry/instrumentation , Equipment Design , Optical Phenomena
7.
ACS Nano ; 14(11): 15293-15305, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33104341

ABSTRACT

We present multiplexer methodology and hardware for nanoelectronic device characterization. This high-throughput and scalable approach to testing large arrays of nanodevices operates from room temperature to milli-Kelvin temperatures and is universally compatible with different materials and integration techniques. We demonstrate the applicability of our approach on two archetypal nanomaterials-graphene and semiconductor nanowires-integrated with a GaAs-based multiplexer using wet or dry transfer methods. A graphene film grown by chemical vapor deposition is transferred and patterned into an array of individual devices, achieving 94% yield. Device performance is evaluated using data fitting methods to obtain electrical transport metrics, showing mobilities comparable to nonmultiplexed devices fabricated on oxide substrates using wet transfer techniques. Separate arrays of indium-arsenide nanowires and micromechanically exfoliated monolayer graphene flakes are transferred using pick-and-place techniques. For the nanowire array mean values for mobility µFE = 880/3180 cm2 V-1 s-1 (lower/upper bound), subthreshold swing 430 mV dec-1, and on/off ratio 3.1 decades are extracted, similar to nonmultiplexed devices. In another array, eight mechanically exfoliated graphene flakes are transferred using techniques compatible with fabrication of two-dimensional superlattices, with 75% yield. Our results are a proof-of-concept demonstration of a versatile platform for scalable fabrication and cryogenic characterization of nanomaterial device arrays, which is compatible with a broad range of nanomaterials, transfer techniques, and device integration strategies from the forefront of quantum technology research.

8.
J Exp Biol ; 223(Pt 21)2020 11 02.
Article in English | MEDLINE | ID: mdl-32967999

ABSTRACT

Coping with stressors can require substantial energetic investment, and when resources are limited, such investment can preclude simultaneous expenditure on other biological processes. Among endotherms, energetic demands of thermoregulation can also be immense, yet our understanding of whether a stress response is sufficient to induce changes in thermoregulatory investment is limited. Using the black-capped chickadee as a model species, we tested a hypothesis that stress-induced changes in surface temperature (Ts), a well-documented phenomenon across vertebrates, stem from trade-offs between thermoregulation and stress responsiveness. Because social subordination is known to constrain access to resources in this species, we predicted that Ts and dry heat loss of social subordinates, but not social dominants, would fall under stress exposure at low ambient temperatures (Ta), and rise under stress exposure at high Ta, thus permitting a reduction in total energetic expenditure toward thermoregulation. To test our predictions, we exposed four social groups of chickadees to repeated stressors and control conditions across a Ta gradient (n=30 days/treatment/group), whilst remotely monitoring social interactions and Ts Supporting our hypothesis, we show that: (1) social subordinates (n=12), who fed less than social dominants and alone experienced stress-induced mass-loss, displayed significantly larger changes in Ts following stress exposure than social dominants (n=8), and (2) stress-induced changes in Ts significantly increased heat conservation at low Ta and heat dissipation at high Ta among social subordinates alone. These results suggest that chickadees adjust their thermoregulatory strategies during stress exposure when resources are limited by ecologically relevant processes.


Subject(s)
Hierarchy, Social , Songbirds , Animals , Body Temperature Regulation , Temperature
9.
Sci Rep ; 10(1): 6098, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32269249

ABSTRACT

In today's data-driven world, the ability to process large data volumes is crucial. Key tasks, such as pattern recognition and image classification, are well suited for artificial neural networks (ANNs) inspired by the brain. Neuromorphic computing approaches aimed towards physical realizations of ANNs have been traditionally supported by micro-electronic platforms, but recently, photonic techniques for neuronal emulation have emerged given their unique properties (e.g. ultrafast operation, large bandwidths, low cross-talk). Yet, hardware-friendly systems of photonic spiking neurons able to perform processing tasks at high speeds and with continuous operation remain elusive. This work provides a first experimental report of Vertical-Cavity Surface-Emitting Laser-based spiking neurons demonstrating different functional processing tasks, including coincidence detection and pattern recognition, at ultrafast rates. Furthermore, our approach relies on simple hardware implementations using off-the-shelf components. These results therefore hold exciting prospects for novel, compact and high-speed neuromorphic photonic platforms for future computing and Artificial Intelligence systems.


Subject(s)
Neural Networks, Computer , Optics and Photonics/methods , Pattern Recognition, Automated/methods , Lasers , Optics and Photonics/instrumentation , Semiconductors
10.
J Exp Biol ; 223(Pt 4)2020 02 26.
Article in English | MEDLINE | ID: mdl-31974220

ABSTRACT

The fact that body temperature can rise or fall following exposure to stressors has been known for nearly two millennia; however, the functional value of this phenomenon remains poorly understood. We tested two competing hypotheses to explain stress-induced changes in temperature, with respect to surface tissues. Under the first hypothesis, changes in surface temperature are a consequence of vasoconstriction that occur to attenuate blood loss in the event of injury and serve no functional purpose per se; defined as the 'haemoprotective hypothesis'. Under the second hypothesis, changes in surface temperature reduce thermoregulatory burdens experienced during activation of a stress response, and thus hold a direct functional value: the 'thermoprotective hypothesis'. To understand whether stress-induced changes in surface temperature have functional consequences, we tested predictions of these two hypotheses by exposing black-capped chickadees (n=20) to rotating stressors across an ecologically relevant ambient temperature gradient, while non-invasively monitoring surface temperature (eye region temperature) using infrared thermography. Our results show that individuals exposed to rotating stressors reduce surface temperature and dry heat loss at low ambient temperature and increase surface temperature and dry heat loss at high ambient temperature, when compared with controls. These results support the thermoprotective hypothesis and suggest that changes in surface temperature following stress exposure have functional consequences and are consistent with an adaptation. Such findings emphasize the importance of the thermal environment in shaping physiological responses to stressors in vertebrates, and in doing so, raise questions about their suitability within the context of a changing climate.


Subject(s)
Body Temperature Regulation/physiology , Body Temperature/physiology , Songbirds/physiology , Stress, Physiological/physiology , Animals , Female , Male , Thermography/methods
11.
Sci Rep ; 8(1): 12515, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30131544

ABSTRACT

Controlled generation and inhibition of externally-triggered picosecond optical pulsating regimes are demonstrated experimentally in a quantum dot mode locked laser (QDMLL) subject to external injection of an amplitude modulated optical signal. This approach also allows full control and repeatability of the time windows of generated picosecond optical pulses; hence permitting to define precisely their temporal duration (from <1 ns spans) and repetition frequency (from sub-Hz to at least hundreds of MHz). The use of a monolithic QDMLL, operating at 1300 nm, provides a system with a very small footprint that is fully compatible with optical telecommunication networks. This offers excellent prospects for use in applications requiring the delivery of ultrashort optical pulses at precise time instants and at tunable rates, such as optical imaging, time-of-flight diagnostics and optical communication systems.

12.
Opt Lett ; 42(8): 1560-1563, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28409798

ABSTRACT

We report experimentally and theoretically on the controllable inhibition of spiking regimes in a 1300 nm wavelength vertical-cavity surface-emitting laser. Reproducible suppression of spiking dynamics is demonstrated at fast operation speeds (up to sub-ns rates) and with total control on the temporal duration of the spiking inhibition windows. This Letter opens new paths toward a photonic inhibitory neuronal model system for use in future neuromorphic photonic information processing modules and which are able to operate at speeds up to 8 orders of magnitude faster than biological neurons.

13.
PLoS One ; 12(3): e0174650, 2017.
Article in English | MEDLINE | ID: mdl-28355280

ABSTRACT

Living closely with others can provide a myriad of fitness benefits, from shared territory defense to co-operative resource acquisition. Costs of social aggregation are not absent, however, and likely influence optimal and observed groups' sizes in a social species. Here, we explored optimal group size in a joint-nesting cuckoo species (the Smooth-billed Ani, Crotophaga ani) using endocrine markers of stress physiology (corticosterone, or CORT). Smooth-billed Anis exhibit intense reproductive competition that is exacerbated in atypically large groups. We therefore hypothesized that intra-group competition (measured by social group size) mediates the desirability and physiological cost of social group membership in this species. To test this hypothesis, we captured 47 adult Smooth-billed Anis (31 males, 16 females) during the breeding seasons of 2012-2014 in south-western Puerto Rico, and documented social group sizes. Tail feathers were sampled and used to quantify CORT (pg/mg) in enzyme-linked immunosorbent assays (ELISAs) (n = 50). Our analyses show significant differences in feather-CORT of adults between categorical group sizes, with individuals from atypically large social groups (≥ x + 1SD) having highest mean concentrations (33.319 pg/mg), and individuals from atypically small social groups (≤ x - 1SD) having lowest mean concentrations (8.969 pg/mg). Whether reproductive competition or effort is responsible for elevated CORT in atypically large social groups, however, remains unclear. Our results suggest that living in atypically large groups is physiologically expensive and may represent an evolutionarily unstable strategy. To our knowledge, this is the first study to explore a correlation between stress physiology and group size in a joint-nesting species.


Subject(s)
Birds/physiology , Corticosterone/metabolism , Feathers/metabolism , Social Behavior , Animals , Birds/metabolism , Breeding , Cooperative Behavior , Enzyme-Linked Immunosorbent Assay , Female , Male , Molting , Nesting Behavior , Population Density , Puerto Rico , Reproduction , Seasons
14.
Hum Mov Sci ; 43: 169-82, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26097008

ABSTRACT

Dynamic Signature Verification (DSV) is a biometric modality that identifies anatomical and behavioral characteristics when an individual signs their name. Conventionally signature data has been captured using pen/tablet apparatus. However, the use of other devices such as the touch-screen tablets has expanded in recent years affording the possibility of assessing biometric interaction on this new technology. To explore the potential of employing DSV techniques when a user signs or swipes with their finger, we report a study to correlate pen and finger generated features. Investigating the stability and correlation between a set of characteristic features recorded in participant's signatures and touch-based swipe gestures, a statistical analysis was conducted to assess consistency between capture scenarios. The results indicate that there is a range of static and dynamic features such as the rate of jerk, size, duration and the distance the pen traveled that can lead to interoperability between these two systems for input methods for use within a potential biometric context. It can be concluded that this data indicates that a general principle is that the same underlying constructional mechanisms are evident.


Subject(s)
Biometric Identification/methods , Computers, Handheld , Handwriting , Motor Skills , Touch , Feasibility Studies , Humans , Software
15.
Prehosp Emerg Care ; 19(2): 320-7, 2015.
Article in English | MEDLINE | ID: mdl-25350269

ABSTRACT

Although the epidemiology of civilian trauma is distinct from that encountered in combat, in both settings, extremity hemorrhage remains a major preventable cause of potential mortality. The current paper describes the largest case series in the literature in which police officers arriving prior to emergency medical services applied commercially available field tourniquets to civilian victims of violent trauma. Although all 3 patients with vascular injury arrived at the receiving emergency department in extremis, they were successfully resuscitated and survived to discharge without major morbidity. While this outcome is likely multifactorial and highlights the exceptional care delivered by the modern trauma system, tourniquet application appears to have kept critically injured patients alive long enough to reach definitive trauma care. No patient had a tourniquet-related complication. This case series suggests that law enforcement officers can effectively identify indications for tourniquets and rapidly apply such life-saving interventions.


Subject(s)
Emergency Medical Services/statistics & numerical data , Extremities/injuries , Hemorrhage/therapy , Tourniquets/statistics & numerical data , Wounds and Injuries/therapy , Humans , Law Enforcement
16.
Exp Biol Med (Maywood) ; 239(2): 169-76, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24414478

ABSTRACT

Activating mutations in the Wnt signaling pathway account for the initiation of greater than 90% of all colorectal cancers and this pathway has been implicated in numerous other diseases. Therefore, identifying small molecule inhibitors of this pathway is of critical importance towards identifying clinically relevant drugs. Numerous screens have been employed to identify therapeutic reagents, but none have made it to advanced clinical trials, suggesting that traditional screening methods are ineffective at identifying clinically relevant targets. Here, we describe a novel in vivo screen to identify small molecule inhibitors of the Wnt pathway. Specifically, treatment of zebrafish embryos with LiCl inhibits GSK3 kinase function, resulting in hyperactivation of the signaling pathway and an eyeless phenotype at 1 day post fertilization. Using the small molecule XAV939, a known inhibitor of Wnt signaling, we rescued the LiCl induced eyeless phenotype, confirming efficacy of the screen. We next tested our assay with 400 known small molecule kinase inhibitors, none of which should inhibit Wnt signaling below the level of GSK3 based on their known targets. Accordingly, none of these small molecules rescued the eyeless phenotype, which demonstrates the stringency of the assay. However, several of these small molecule kinase inhibitors did generate a non-Wnt phenotype in accordance with the kinase they targeted. Therefore, combining the efficacy, sensitivity, and stringency of this preliminary screen, this model will provide an alternative to the traditional in vitro screen, generating potentially clinical relevant drugs in a rapid and cost-effective way.


Subject(s)
Drug Evaluation, Preclinical/methods , Wnt Signaling Pathway/drug effects , Zebrafish/metabolism , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Embryonic Development/genetics , Gene Expression Regulation, Developmental/drug effects , Glycogen Synthase Kinase 3/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/pharmacology , Lithium Chloride/pharmacology , Phenotype , Zebrafish/embryology
18.
Am J Respir Cell Mol Biol ; 47(3): 387-94, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22556158

ABSTRACT

Mechanical ventilation is necessary for patients with acute respiratory failure, but can cause or propagate lung injury. We previously identified cyclooxygenase-2 as a candidate gene in mechanical ventilation-induced lung injury. Our objective was to determine the role of cyclooxygenase-2 in mechanical ventilation-induced lung injury and the effects of cyclooxygenase-2 inhibition on lung inflammation and barrier disruption. Mice were mechanically ventilated at low and high tidal volumes, in the presence or absence of pharmacologic cyclooxygenase-2-specific inhibition with 3-(4-methylsulphonylphenyl)-4-phenyl-5-trifluoromethylisoxazole (CAY10404). Lung injury was assessed using markers of alveolar-capillary leakage and lung inflammation. Cyclooxygenase-2 expression and activity were measured by Western blotting, real-time PCR, and lung/plasma prostanoid analysis, and tissue sections were analyzed for cyclooxygenase-2 staining by immunohistochemistry. High tidal volume ventilation induced lung injury, significantly increasing both lung leakage and lung inflammation relative to control and low tidal volume ventilation. High tidal volume mechanical ventilation significantly induced cyclooxygenase-2 expression and activity, both in the lungs and systemically, compared with control mice and low tidal volume mice. The immunohistochemical analysis of lung sections localized cyclooxygenase-2 expression to monocytes and macrophages in the alveoli. The pharmacologic inhibition of cyclooxygenase-2 with CAY10404 significantly decreased cyclooxygenase activity and attenuated lung injury in mice ventilated at high tidal volume, attenuating barrier disruption, tissue inflammation, and inflammatory cell signaling. This study demonstrates the induction of cyclooxygenase-2 by mechanical ventilation, and suggests that the therapeutic inhibition of cyclooxygenase-2 may attenuate ventilator-induced acute lung injury.


Subject(s)
Cyclooxygenase 2/metabolism , Lung Injury/enzymology , Respiration, Artificial/adverse effects , Animals , Cyclooxygenase 2 Inhibitors/pharmacology , Immunohistochemistry , Lung Injury/etiology , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
19.
Zebrafish ; 8(2): 65-71, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21663448

ABSTRACT

Wnt signaling is a major player during development and its misregulation often leads to disease, especially cancer. The negative feedback Wnt regulator homologs, Nkd1 and Nkd2, have been shown to inhibit Wnt signaling during development, and current evidence suggests that Nkds degrade Dvl proteins to antagonize Wnt signaling. Here, we demonstrate that during early zebrafish development Nkd1 does not alter either endogenous or exogenous levels of Dvl2. Furthermore, Dvl2 does not affect the levels of Nkd1. Cumulatively, these results demonstrate that Dvl2 is a ubiquitous and stable protein and that Nkds may not always function to degrade Dvl proteins as a method of inhibiting Wnt signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Phosphoproteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Dishevelled Proteins , Gene Expression Regulation, Developmental , Humans , Molecular Sequence Data , Phosphoproteins/chemistry , Phosphoproteins/genetics , Proteasome Endopeptidase Complex/metabolism , Sequence Alignment , Signal Transduction , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...