Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Phys Chem A ; 124(20): 4015-4024, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32353235

ABSTRACT

Laser flash photolysis coupled with laser-induced fluorescence observation of OH has been used to observe the equilibration of OH + C2H4 ↔ HOC2H4 over the temperature range 563-723 K and pressures of bath gas (N2) from 58 to 250 Torr. The time-resolved OH traces have been directly and globally fitted with a master equation in order to extract ΔRH00, the binding energy of the HOC2H4 adduct, with respect to reagents. The global approach allows the role that OH abstraction plays at higher temperatures to be identified. The resultant value ofΔRH00, 111.8 kJ mol-1, is determined to be better than 2 kJ mol-1 and is in agreement with our ab initio calculations (carried out at the CCSD(T)/CBS//M06-2X/aug-cc-pVTZ level), 111.4 kJ mol-1, and other state of the art calculations. Parameters for the abstraction channel are also in good agreement with previous experimental studies. To effect this analysis, the MESMER master equation code was extended to directly incorporate secondary chemistry: diffusional loss from the observation region and reaction with the photolytic precursor. These extensions, which, among other things, resolve issues related to the merging of chemically significant and internal energy relaxation eigenvalues, are presented.

2.
Am J Transplant ; 17(7): 1895-1904, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28371091

ABSTRACT

Bronchial stenosis in lung transplant recipients is a common disorder that adversely affects clinical outcomes. It is evaluated by spirometry, CT scanning, and bronchoscopy with significant limitations. We hypothesize that MRI using both ultrashort echo time (UTE) scans and hyperpolarized (HP) 129 Xe gas can offer structural and functional assessment of bronchial stenosis seen after lung transplantation. Six patients with lung transplantation-related bronchial stenosis underwent HP 129 Xe MRI and UTE MRI in the same session. Three patients subsequently underwent airway stent placement and had repeated MRI at 4-week follow-up. HP 129 Xe MRI depicted decreased ventilation distal to the stenotic airway. After airway stent placement, MRI showed that low-ventilation regions had decreased (35% vs. 27.6%, p = 0.006) and normal-ventilation regions had increased (17.9% vs. 27.6%, p = 0.04) in the stented lung. Improved gas transfer was also seen on 129 Xe MRI. There was a good correlation between UTE MRI and independent bronchoscopic airway diameter assessment (Pearson correlation coefficient = 0.92). This pilot study shows that UTE and HP 129 Xe MRI are feasible in patients with bronchial stenosis related to lung transplantation and may provide structural and functional airway assessment to guide treatment. These conclusions need to be confirmed with larger studies.


Subject(s)
Bronchial Diseases/diagnosis , Constriction, Pathologic/diagnosis , Graft Rejection/diagnosis , Image Processing, Computer-Assisted/methods , Lung Transplantation/adverse effects , Magnetic Resonance Imaging/methods , Postoperative Complications/diagnosis , Adult , Aged , Bronchial Diseases/etiology , Bronchoscopy , Constriction, Pathologic/etiology , Female , Follow-Up Studies , Graft Rejection/etiology , Graft Survival , Humans , Male , Middle Aged , Postoperative Complications/etiology , Prognosis , Risk Factors , Transplant Recipients , Young Adult
3.
J Phys Chem A ; 119(28): 7668-82, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25992467

ABSTRACT

Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300-900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988 , 92 , 2455 - 2462 ). These corrections necessitated the development of a detailed model of the B̃(2)A1' (3s)-X̃(2)A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k∞(T); it was used to fit the experimental rate coefficients using the Levenberg-Marquardt algorithm to minimize χ(2) calculated from the differences between experimental and calculated rate coefficients. Parameters for both k∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300-2000 K. A high pressure limit of k∞(T) = 5.76 × 10(-11)(T/298 K)(-0.34) cm(3) molecule(-1) s(-1) was obtained, which agrees well with the best available theoretical expression.

4.
J Phys Chem A ; 119(28): 7430-8, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25774572

ABSTRACT

Statistical rate theory calculations, in particular formulations of the chemical master equation, are widely used to calculate rate coefficients of interest in combustion environments as a function of temperature and pressure. However, despite the increasing accuracy of electronic structure calculations, small uncertainties in the input parameters for these master equation models can lead to relatively large uncertainties in the calculated rate coefficients. Master equation input parameters may be constrained further by using experimental data and the relationship between experiment and theory warrants further investigation. In this work, the CH3OCH2 + O2 system, of relevance to the combustion of dimethyl ether (DME), is used as an example and the input parameters for master equation calculations on this system are refined through fitting to experimental data. Complementing these fitting calculations, global sensitivity analysis is used to explore which input parameters are constrained by which experimental conditions, and which parameters need to be further constrained to accurately predict key elementary rate coefficients. Finally, uncertainties in the calculated rate coefficients are obtained using both correlated and uncorrelated distributions of input parameters.

5.
J Phys Chem A ; 118(34): 6773-88, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25069059

ABSTRACT

The methoxymethyl radical, CH3OCH2, is an important intermediate in the low temperature combustion of dimethyl ether. The kinetics and yields of OH from the reaction of the methoxymethyl radical with O2 have been measured over the temperature and pressure ranges of 195-650 K and 5-500 Torr by detecting the hydroxyl radical using laser-induced fluorescence following the excimer laser photolysis (248 nm) of CH3OCH2Br. The reaction proceeds via the formation of an energized CH3OCH2O2 adduct, which either dissociates to OH + 2 H2CO or is collisionally stabilized by the buffer gas. At temperatures above 550 K, a secondary source of OH was observed consistent with thermal decomposition of stabilized CH3OCH2O2 radicals. In order to quantify OH production from the CH3OCH2 + O2 reaction, extensive relative and absolute OH yield measurements were performed over the same (T, P) conditions as the kinetic experiments. The reaction was studied at sufficiently low radical concentrations (∼10(11) cm(-3)) that secondary (radical + radical) reactions were unimportant and the rate coefficients could be extracted from simple bi- or triexponential analysis. Ab initio (CBS-GB3)/master equation calculations (using the program MESMER) of the CH3OCH2 + O2 system were also performed to better understand this combustion-related reaction as well as be able to extrapolate experimental results to higher temperatures and pressures. To obtain agreement with experimental results (both kinetics and yield data), energies of the key transition states were substantially reduced (by 20-40 kJ mol(-1)) from their ab initio values and the effect of hindered rotations in the CH3OCH2 and CH3OCH2OO intermediates were taken into account. The optimized master equation model was used to generate a set of pressure and temperature dependent rate coefficients for the component nine phenomenological reactions that describe the CH3OCH2 + O2 system, including four well-skipping reactions. The rate coefficients were fitted to Chebyshev polynomials over the temperature and density ranges 200 to 1000 K and 1 × 10(17) to 1 × 10(23) molecules cm(-3) respectively for both N2 and He bath gases. Comparisons with an existing autoignition mechanism show that the well-skipping reactions are important at a pressure of 1 bar but are not significant at 10 bar. The main differences derive from the calculated rate coefficient for the CH3OCH2OO → CH2OCH2OOH reaction, which leads to a faster rate of formation of O2CH2OCH2OOH.


Subject(s)
Hydroxyl Radical/chemistry , Oxygen/chemistry , Algorithms , Computer Simulation , Fluorescence , Helium/chemistry , Kinetics , Lasers , Models, Chemical , Nitrogen/chemistry , Pressure , Temperature
6.
J Phys Chem A ; 117(44): 11142-54, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24102528

ABSTRACT

The reaction of OH with dimethyl ether (CH3OCH3) has been studied from 195 to 850 K using laser flash photolysis coupled to laser induced fluorescence detection of OH radicals. The rate coefficient from this work can be parametrized by the modified Arrhenius expression k = (1.23 ± 0.46) × 10(-12) (T/298)(2.05±0.23) exp((257 ± 107)/T) cm(3) molecule(-1) s(-1). Including other recent literature data (923-1423 K) gives a modified Arrhenius expression of k1 = (1.54 ± 0.48) × 10(-12) (T/298 K)(1.89±0.16) exp((184 ± 112)/T) cm(3) molecule(-1) s(-1) over the range 195-1423 K. Various isotopomeric combinations of the reaction have also been investigated with deuteration of dimethyl ether leading to a normal isotope effect. Deuteration of the hydroxyl group leads to a small inverse isotope effect. To gain insight into the reaction mechanisms and to support the experimental work, theoretical studies have also been undertaken calculating the energies and structures of the transition states and complexes using high level ab initio methods. The calculations also identify pre- and post-reaction complexes. The calculations show that the pre-reaction complex has a binding energy of ~22 kJ mol(-1). Stabilization into the complex could influence the kinetics of the reaction, especially at low temperatures (<300 K), but there is no direct evidence of this occurring under the experimental conditions of this study. The experimental data have been modeled using the recently developed MESMER (master equation solver for multi energy well reactions) code; the calculated rate coefficients lie within 16% of the experimental values over the temperature range 200-1400 K with a model based on a single transition state. This model also qualitatively reproduces the observed isotope effects, agreeing closely above ~600 K but overestimating them at low temperatures. The low temperature differences may derive from an inadequate treatment of tunnelling and/or from an enhanced role of an outer transition state leading to the pre-reaction complex.

7.
Poult Sci ; 63(7): 1457-61, 1984 Jul.
Article in English | MEDLINE | ID: mdl-6473260

ABSTRACT

The impact of a northern fowl mite (NFM), Ornithonyssus sylviarum (Canestrini and Fanzago), infestation on broiler breeder layers in the field was evaluated by comparing flocks in two adjacent houses (ca. 5,000 birds each). The NFM-free birds produced 3,158.7 dozen more eggs than NFM-infested birds, which was equal to 7.7 eggs per hen housed more than infested birds over the life of the flock. Feed efficiency was affected; feed costs for NFM-infested birds ranged from $ .01 to $ .06/dozen higher than the feed costs for NFM-free birds.


Subject(s)
Chickens/physiology , Mite Infestations/veterinary , Oviposition , Poultry Diseases/physiopathology , Animal Feed/economics , Animals , Energy Metabolism , Female , Male , Mite Infestations/physiopathology , North Carolina
SELECTION OF CITATIONS
SEARCH DETAIL
...