Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 90(5): 055109, 2019 May.
Article in English | MEDLINE | ID: mdl-31153275

ABSTRACT

Rapid mixing of aqueous solutions is a crucial first step to study the kinetics of fast biochemical reactions with high temporal resolution. Remarkable progress toward this goal has been made through the development of advanced stopped-flow mixing techniques resulting in reduced dead times, and thereby extending reaction monitoring capabilities to numerous biochemical systems. Concurrently, piezoelectric actuators for through-space liquid droplet sample delivery have also been applied in several experimental systems, providing discrete picoliter sample volume delivery and precision sample deposition onto a surface, free of confinement within microfluidic devices, tubing, or other physical constraints. Here, we characterize the inertial mixing kinetics of two aqueous droplets (130 pl) produced by piezoelectric-actuated pipettes, following droplet collision in free space and deposition on a surface in a proof of principle experiment. A time-resolved fluorescence system was developed to monitor the mixing and fluorescence quenching of 5-carboxytetramethylrhodamine (5-Tamra) and N-Bromosuccinimide, which we show to occur in less than 10 ms. In this respect, this methodology is unique in that it offers millisecond mixing capabilities for very small quantities of discrete sample volumes. Furthermore, the use of discrete droplets for sample delivery and mixing in free space provides potential advantages, including the elimination of the requirement for a physical construction as with microfluidic systems, and thereby makes possible and extends the experimental capabilities of many systems.

2.
J Proteome Res ; 18(3): 1451-1457, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30669834

ABSTRACT

It was recently shown that sampling of tissues with a picosecond infrared laser (PIRL) for analysis with bottom-up proteomics is advantageous compared to mechanical homogenization. Because the cold ablation of tissues with PIRL irradiation is soft, proteins remain intact and even enzymatic activities are detectable in PIRL homogenates. In contrast, it was observed that irradiation of tissues with a microsecond infrared laser (MIRL) heats the tissue, thereby causing significant damage. In this study, we investigated the question if sampling of tissues with a MIRL for analysis of their proteomes via bottom-up proteomics is possible and how the results are different from sampling of tissues with a PIRL. Comparison of the proteomes of the MIRL and PIRL tissue homogenates showed that the yield of proteins identified by bottom-up proteomics was larger in PIRL homogenates of liver tissue, whereas the yield was higher in MIRL homogenates of muscle tissue, which has a significantly higher content of connective tissue than liver tissue. In the PIRL homogenate of renal tissue, enzymatic activities were detectable, whereas in the corresponding MIRL homogenate, enzymatic activities were absent. In conclusion, MIRL and PIRL pulses are suited for sampling tissues for bottom-up proteomics. If it is important for bottom-up proteomic investigations to inactivate enzymatic activities already in the tissue before its ablation, MIRL tissue sampling is an option, because the proteins in the tissues are denatured and inactivated by the heating of the tissue during irradiation with MIRL irradiation prior to the ablation of the tissue. This heating effect is absent during irradiation of tissue with a PIRL; therefore, sampling of tissues with a PIRL is a choice for purifying enzymes, because their activities are maintained.


Subject(s)
Lasers , Proteins/isolation & purification , Proteomics/methods , Infrared Rays , Laser Therapy/methods , Proteins/chemistry , Specimen Handling
3.
J Chem Phys ; 151(24): 244307, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31893868

ABSTRACT

The deconvolution of low-resolution time-of-flight data has numerous advantages, including the ability to extract additional information from the experimental data. We augment the well-known Lucy-Richardson deconvolution algorithm using various Bayesian prior distributions and show that a prior of second-differences of the signal outperforms the standard Lucy-Richardson algorithm, accelerating the rate of convergence by more than a factor of four, while preserving the peak amplitude ratios of a similar fraction of the total peaks. A novel stopping criterion and boosting mechanism are implemented to ensure that these methods converge to a similar final entropy and local minima are avoided. Improvement by a factor of two in mass resolution allows more accurate quantification of the spectra. The general method is demonstrated in this paper through the deconvolution of fragmentation peaks of the 2,5-dihydroxybenzoic acid matrix and the benzyltriphenylphosphonium thermometer ion, following femtosecond ultraviolet laser desorption.

5.
Anal Chem ; 90(7): 4422-4428, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29522677

ABSTRACT

We report the soft laser extraction and production of highly charged peptide and protein ions for mass spectrometry directly from bulk liquid water at atmospheric pressure and room temperature, using picosecond infrared laser ablation. Stable ion signal from singly charged small molecules, as well as highly charged biomolecular ions, from aqueous solutions at low laser pulse fluence (∼0.3 J cm-2) is demonstrated. Sampling via single picosecond laser pulses is shown to extract less than 27 pL of volume from the sample, producing highly charged peptide and protein ions for mass spectrometry detection. The ablation and ion generation is demonstrated to be soft in nature, producing natively folded proteins ions under sample conditions described for native mass spectrometry. The method provides laser-based sampling flexibility, precision and control with highly charged ion production directly from water at low and near neutral pH. This approach does not require an additional ionization device or high voltage applied directly to the sample.


Subject(s)
Lasers , Mass Spectrometry/methods , Peptides/chemistry , Peptides/isolation & purification , Proteins/chemistry , Proteins/isolation & purification , Water/chemistry , Peptides/analysis , Proteins/analysis , Time Factors
6.
Lasers Surg Med ; 48(4): 385-91, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26941063

ABSTRACT

BACKGROUND AND OBJECTIVE: As a result of wound healing the original tissue is replaced by dysfunctional scar tissue. Reduced tissue damage during surgical procedures beneficially affects the size of the resulting scar and overall healing time. Thus the choice of a particular surgical instrument can have a significant influence on the postoperative wound healing. To overcome these problems of wound healing we applied a novel picosecond infrared laser (PIRL) system to surgical incisions. Previous studies indicated that negligible thermal, acoustic, or ionization stress effects to the surrounding tissue results in a superior wound healing. STUDY DESIGN/MATERIALS AND METHODS: Using the PIRL system as a surgical scalpel, we performed a prospective wound healing study on rat skin and assessed its final impact on scar formation compared to the electrosurgical device and cold steel. As for the incisions, 6 full-thickness, 1-cm long-linear skin wounds were created on the dorsum of four rats using the PIRL, an electrosurgical device, and a conventional surgical scalpel, respectively. Rats were euthanized after 21 days of wound healing. The thickness of the subepithelial fibrosis, the depth and the transverse section of the total scar area of each wound were analyzed histologically. RESULTS: After 21 days of wound healing the incisions made by PIRL showed minor scar tissue formation as compared to the electrosurgical device and the scalpel. Highly significant differences (P < 0.001) were noted by comparing the electrosurgical device with PIRL and scalpel. The transverse section of the scar area also showed significant differences (P = 0.043) when comparing PIRL (mean: 141.46 mm2; 95% CI: 105.8-189.0 mm2) with scalpel incisions (mean: 206.82 mm2; 95% CI: 154.8-276.32 mm2). The subepithelial width of the scars that resulted from using the scalpel were 1.3 times larger than those obtained by using the PIRL (95% CI: 1.0-1.6) though the difference was not significant (P < 0.083). CONCLUSIONS: The hypothesis that PIRL results in minimal scar formation with improved cosmetic outcomes was positively verified. In particular the resection of skin tumors or pathological scars, such as hypertrophic scars or keloids, are promising future fields of PIRL application.


Subject(s)
Cicatrix/prevention & control , Dermatologic Surgical Procedures/instrumentation , Infrared Rays/therapeutic use , Laser Therapy/instrumentation , Lasers , Postoperative Complications/prevention & control , Wound Healing , Animals , Cicatrix/etiology , Electrosurgery/instrumentation , Female , Rats , Treatment Outcome
7.
J Proteomics ; 134: 5-18, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26721442

ABSTRACT

Many diseases are associated with protein species perturbations. A prominent example of an established diagnostic marker is the glycated protein species of hemoglobin, termed HbA1c. HbA1c concentration is increased in the blood of diabetes mellitus patients due to their poor control of blood glucose levels resulting in an increased non-enzymatic glycosylation of hemoglobin producing HbA1c. This important diagnostic marker is routinely measured in the blood of diabetes patients. As in the case of HbA1c, protein species can mirror pathophysiological events. Shifts in the levels of protein species can be associated with or even be responsible for disease making them well suited as diagnostic markers. However, only a few protein species are currently used as diagnostic markers in routine clinical chemistry laboratories, despite being widely established in clinical proteomics research. This review provides an overview of the biochemical characteristics associated with protein species as well as examples of pathophysiological mechanisms, which cause modifications in the protein species composition, thereby emphasizing the importance of screening for protein markers at the species level. Further, we highlight techniques, which are currently utilized for investigating protein species markers in clinical research. BIOLOGICAL SIGNIFICANCE: The success rate of FDA approved diagnostic protein markers until today is very low compared to the number of published candidate disease markers. It is hypothesized that one important reason is the gene-centric view which is still followed in clinical proteomics: In many investigations proteins are still digested in small peptides thus making it nearly impossible to discriminate between healthy proteins and pathologic proteins causing diseases. Thus this review is focusing on the biochemistry and patho-biochemistry of proteins, is highlighting the need for screening for disease markers on the protein species level and is giving an overview about available techniques.


Subject(s)
Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Glycated Hemoglobin/metabolism , Animals , Biomarkers/blood , Humans
8.
Rev Sci Instrum ; 86(8): 086105, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26329245

ABSTRACT

A simple method for the location and auto-alignment of sample fiducials for sample registration using widely available MATLAB/LabVIEW software is demonstrated. The method is robust, easily implemented, and applicable to a wide variety of experiment types for improved reproducibility and increased setup speed. The software uses image processing to locate and measure the diameter and center point of circular fiducials for distance self-calibration and iterative alignment and can be used with most imaging systems. The method is demonstrated to be fast and reliable in locating and aligning sample fiducials, provided here by a nanofabricated array, with accuracy within the optical resolution of the imaging system. The software was further demonstrated to register, load, and sample the dynamically wetted array.

9.
Angew Chem Int Ed Engl ; 54(1): 285-8, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25346525

ABSTRACT

A picosecond IR laser (PIRL) can be used to blast proteins out of tissues through desorption by impulsive excitation (DIVE) of intramolecular vibrational states of water molecules in the cell in less than a millisecond. With PIRL-DIVE proteins covering a range of a few kDa up to several MDa are extracted in high quantities compared to conventional approaches. The chemical composition of extracted proteins remains unaltered and even enzymatic activities are maintained.


Subject(s)
Lasers , Proteins/isolation & purification , Animals , Infrared Rays , Liver/chemistry , Mice , Muscles/chemistry , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
J Biol Inorg Chem ; 18(6): 701-13, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23807763

ABSTRACT

Components of a protein-integrated, earth-abundant metal macrocycle catalyst, with the purpose of H2 production from aqueous protons under green conditions, are characterized. The cobalt-corrin complex, cobinamide, is demonstrated to produce H2 (4.4 ± 1.8 × 10(-3) turnover number per hour) in a homogeneous, photosensitizer/sacrificial electron donor system in pure water at neutral pH. Turnover is proposed to be limited by the relatively low population of the gateway cobalt(III) hydride species. A heterolytic mechanism for H2 production from the cobalt(II) hydride is proposed. Two essential requirements for assembly of a functional protein-catalyst complex are demonstrated for interaction of cobinamide with the (ßα)8 TIM barrel protein, EutB, from the adenosylcobalamin-dependent ethanolamine ammonia lyase from Salmonella typhimurium: (1) high-affinity equilibrium binding of the cobinamide (dissociation constant 2.1 × 10(-7) M) and (2) in situ photoreduction of the cobinamide-protein complex to the Co(I) state. Molecular modeling of the cobinamide-EutB interaction shows that these features arise from specific hydrogen-bond and apolar interactions of the protein with the alkylamide substituents and the ring of the corrin, and accessibility of the binding site to the solution. The results establish cobinamide-EutB as a platform for design and engineering of a robust H2 production metallocatalyst that operates under green conditions and uses the advantages of the protein as a tunable medium and material support.


Subject(s)
Cobamides/metabolism , Ethanolamine Ammonia-Lyase/chemistry , Ethanolamine Ammonia-Lyase/metabolism , Hydrogen/metabolism , Photochemical Processes , Binding Sites , Cobalt/chemistry , Cobalt/metabolism , Cobamides/chemistry , Hydrogen/chemistry , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Oxidation-Reduction , Salmonella typhimurium/metabolism , Water/chemistry , Water/metabolism
11.
J Am Chem Soc ; 133(18): 6968-77, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21491908

ABSTRACT

Protein contributions to the substrate-triggered cleavage of the cobalt-carbon (Co-C) bond and formation of the cob(II)alamin-5'-deoxyadenosyl radical pair in the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium have been studied by using pulsed-laser photolysis of AdoCbl in the EAL-AdoCbl-substrate ternary complex, and time-resolved probing of the photoproduct dynamics by using ultraviolet-visible absorption spectroscopy on the 10(-7)-10(-1) s time scale. Experiments were performed in a fluid dimethylsulfoxide/water cryosolvent system at 240 K, under conditions of kinetic competence for thermal cleavage of the Co-C bond in the ternary complex. The static ultraviolet-visible absorption spectra of holo-EAL and ternary complex are comparable, indicating that the binding of substrate does not labilize the cofactor cobalt-carbon (Co-C) bond by significantly distorting the equilibrium AdoCbl structure. Photolysis of AdoCbl in EAL at 240 K leads to cob(II)alamin-5'-deoxyadenosyl radical pair quantum yields of <0.01 at 10(-6) s in both holo-EAL and ternary complex. Three photoproduct states are populated following a saturating laser pulse, and labeled, P(f), P(s), and P(c). The relative amplitudes and first-order recombination rate constants of P(f) (0.4-0.6; 40-50 s(-1)), P(s) (0.3-0.4; 4 s(-1)), and P(c) (0.1-0.2; 0) are comparable in holo-EAL and in the ternary complex. Time-resolved, full-spectrum electron paramagnetic resonance (EPR) spectroscopy shows that visible irradiation alters neither the kinetics of thermal cob(II)alamin-substrate radical pair formation, nor the equilibrium between ternary complex and cob(II)alamin-substrate radical pair, at 246 K. The results indicate that substrate binding to holo-EAL does not "switch" the protein to a new structural state, which promptly stabilizes the cob(II)alamin-5'-deoxyadenosyl radical pair photoproduct, either through an increased barrier to recombination, a decreased barrier to further radical pair separation, or lowering of the radical pair state free energy, or a combination of these effects. Therefore, we conclude that such a change in protein structure, which is independent of changes in the AdoCbl structure, and specifically the Co-C bond length, is not a basis of Co-C bond cleavage catalysis. The results suggest that, following the substrate trigger, the protein interacts with the cofactor to contiguously guide the cleavage of the Co-C bond, at every step along the cleavage coordinate, starting from the equilibrium configuration of the ternary complex. The cleavage is thus represented by a diagonal trajectory across a free energy surface, that is defined by chemical (Co-C separation) and protein configuration coordinates.


Subject(s)
Carbon/chemistry , Cobalt/chemistry , Cobamides/chemistry , Ethanolamine Ammonia-Lyase/chemistry , Propanolamines/chemistry , Catalysis , Photolysis
12.
Biochemistry ; 48(1): 140-7, 2009 Jan 13.
Article in English | MEDLINE | ID: mdl-19072291

ABSTRACT

The quantum yield and kinetics of decay of cob(II)alamin formed by pulsed-laser photolysis of adenosylcobalamin (AdoCbl; coenzyme B(12)) in AdoCbl-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium have been studied on the 10(-7)-10(-1) s time scale at 295 K by using transient ultraviolet-visible absorption spectroscopy. The aim is to probe the mechanism of formation and stabilization of the cob(II)alamin-5'-deoxyadenosyl radical pair, which is a key intermediate in EAL catalysis, and the influence of substrate binding on this process. Substrate binding is required for cobalt-carbon bond cleavage in the native system. Photolysis of AdoCbl in EAL leads to a quantum yield at 10(-7) s for cob(II)alamin of 0.08 +/- 0.01, which is 3-fold smaller than for AdoCbl in aqueous solution (0.23 +/- 0.01). The protein binding site therefore suppresses photoproduct radical pair formation. Three photoproduct states, P(f), P(s), and P(c), are identified in holo-EAL by the different cob(II)alamin decay kinetics (subscripts denote fast, slow, and constant, respectively). These states have the following first-order decay rate constants and quantum yields: 2.2 x 10(3) s(-1) and 0.02 for P(f), 4.2 x 10(2) s(-1) and 0.01 for P(s), and constant amplitude, with no recombination, and 0.05 for P(c), respectively. Binding of the substrate analogue (S)-1-amino-2-propanol to EAL eliminates the P(f) state and lowers the quantum yield of P(c) (0.03) relative to that of P(s) (0.01) but does not significantly change the quantum yield or decay rate constant of P(s), relative to those of holo-EAL. The substrate analogue thus influences the quantum yield at 10(-7) s by changing the cage escape rate from the geminate cob(II)alamin-5'-deoxyadenosyl radical pair state. However, the predicted substrate analogue binding-induced increase in the quantum yield is not observed. It is proposed that the substrate analogue does not induce the radical pair stabilizing changes in the protein that are characteristic of true substrates.


Subject(s)
Cobamides/radiation effects , Ethanolamine Ammonia-Lyase/chemistry , Cobamides/chemistry , Free Radicals/chemistry , Kinetics , Lasers , Photolysis , Solutions , Spectrophotometry , Time Factors
13.
Mass Spectrom Rev ; 27(3): 237-85, 2008.
Article in English | MEDLINE | ID: mdl-18320595

ABSTRACT

This review presents an overview of electron ionization time-of-flight mass spectroscopy (EITOFMS), beginning with its early development to the employment of modern high-resolution electron ionization sources. The EITOFMS is demonstrated to be ideally suited for analytical and basic chemical physics studies. Studies of the formation of positive ions by electron ionization time-of-flight mass spectroscopy have been responsible for many of the known ionization potentials of molecules and radicals, as well as accepted bond dissociation energies for ions and neutral molecules. The application of TOFMS has been particularly important in the area of negative ion physics and chemistry. A wide variety of negative ion properties have been discovered and studied by using these methods including: autodetachment lifetimes, metastable dissociation, Rydberg electron transfer reactions and field detachment, SF(6) Scavenger method for detecting temporary negative ion states, and many others.

SELECTION OF CITATIONS
SEARCH DETAIL
...