Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.123
Filter
1.
Diabetes ; 73(5): 653-658, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38387049

ABSTRACT

Reactive oxygen species (ROS) are formed by virtually all tissues. In normal concentrations they facilitate many physiologic activities, but in excess they cause oxidative stress and tissue damage. Local antioxidant enzyme synthesis in cells is regulated by the cytoplasmic KEAP-1/Nrf2 complex, which is stimulated by ROS, to release Nrf2 for entry into the nucleus, where it upregulates antioxidant gene expression. Major antioxidant enzymes include glutathione peroxidase (GPx), catalase (CAT), superoxide dismutases (SOD), hemoxygenases (HO), and peroxiredoxins (Prdx). Notably, the pancreatic islet ß-cell does not express GPx or CAT, which puts it at greater risk for ROS damage caused by postprandial hyperglycemia. Experimentally, overexpression of GPx in ß-cell lines and isolated islets, as well as in vivo studies using genetic models of type 2 diabetes (T2D), has demonstrated enhanced protection against hyperglycemia and oxidative stress. Oral treatment of diabetic rodents with ebselen, a GPx mimetic that is approved for human clinical use, reproduced these findings. Prdx detoxify hydrogen peroxide and reduce lipid peroxides. This suggests that pharmacologic development of more potent, ß-cell-specific antioxidants could be valuable as a treatment for oxidative stress due to postprandial hyperglycemia in early T2D in humans.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Animals , Humans , Antioxidants/therapeutic use , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Type 2/drug therapy , Rodentia/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Catalase/genetics , Catalase/metabolism , Superoxide Dismutase/genetics , Hyperglycemia/drug therapy , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism
2.
eNeuro ; 10(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37932046

ABSTRACT

Migratory locusts enter a reversible hypometabolic coma to survive environmental anoxia, wherein the cessation of CNS activity is driven by spreading depolarization (SD). While glycolysis is recognized as a crucial anaerobic energy source contributing to animal anoxia tolerance, its influence on the anoxic SD trajectory and recovery outcomes remains poorly understood. We investigated the effects of varying glycolytic capacity on adult female locust anoxic SD parameters, using glucose or the glycolytic inhibitors 2-deoxy-d-glucose (2DG) or monosodium iodoacetate (MIA). Surprisingly, 2DG treatment shared similarities with glucose yet had opposite effects compared with MIA. Specifically, although SD onset was not affected, both glucose and 2DG expedited the recovery of CNS electrical activity during reoxygenation, whereas MIA delayed it. Additionally, glucose and MIA, but not 2DG, increased tissue damage and neural cell death following anoxia-reoxygenation. Notably, glucose-induced injuries were associated with heightened CO2 output during the early phase of reoxygenation. Conversely, 2DG resulted in a bimodal response, initially dampening CO2 output and gradually increasing it throughout the recovery period. Given the discrepancies between effects of 2DG and MIA, the current results require cautious interpretations. Nonetheless, our findings present evidence that glycolysis is not a critical metabolic component in either anoxic SD onset or recovery and that heightened glycolysis during reoxygenation may exacerbate CNS injuries. Furthermore, we suggest that locust anoxic recovery is not solely dependent on energy availability, and the regulation of metabolic flux during early reoxygenation may constitute a strategy to mitigate damage.


Subject(s)
Grasshoppers , Animals , Female , Grasshoppers/metabolism , Carbon Dioxide , Hypoxia/metabolism , Glucose/metabolism , Iodoacetic Acid , Glycolysis
3.
Phys Rev Lett ; 131(8): 082502, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37683153

ABSTRACT

We present an apparatus for detection of cyclotron radiation yielding a frequency-based ß^{±} kinetic energy determination in the 5 keV to 2.1 MeV range, characteristic of nuclear ß decays. The cyclotron frequency of the radiating ß particles in a magnetic field is used to determine the ß energy precisely. Our work establishes the foundation to apply the cyclotron radiation emission spectroscopy (CRES) technique, developed by the Project 8 Collaboration, far beyond the 18-keV tritium endpoint region. We report initial measurements of ß^{-}'s from ^{6}He and ß^{+}'s from ^{19}Ne decays to demonstrate the broadband response of our detection system and assess potential systematic uncertainties for ß spectroscopy over the full (MeV) energy range. To our knowledge, this is the first direct observation of cyclotron radiation from individual highly relativistic ß's in a waveguide. This work establishes the application of CRES to a variety of nuclei, opening its reach to searches for new physics beyond the TeV scale via precision ß-decay measurements.

4.
Phys Rev Lett ; 131(10): 102502, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37739382

ABSTRACT

The absolute scale of the neutrino mass plays a critical role in physics at every scale, from the subatomic to the cosmological. Measurements of the tritium end-point spectrum have provided the most precise direct limit on the neutrino mass scale. In this Letter, we present advances by Project 8 to the cyclotron radiation emission spectroscopy (CRES) technique culminating in the first frequency-based neutrino mass limit. With only a cm^{3}-scale physical detection volume, a limit of m_{ß}<155 eV/c^{2} (152 eV/c^{2}) is extracted from the background-free measurement of the continuous tritium beta spectrum in a Bayesian (frequentist) analysis. Using ^{83m}Kr calibration data, a resolution of 1.66±0.19 eV (FWHM) is measured, the detector response model is validated, and the efficiency is characterized over the multi-keV tritium analysis window. These measurements establish the potential of CRES for a high-sensitivity next-generation direct neutrino mass experiment featuring low background and high resolution.

5.
Article in English | MEDLINE | ID: mdl-37690599

ABSTRACT

Insects experience different kinds of environmental stresses that can impair neural performance, leading to spreading depolarization (SD) of nerve cells and neural shutdown underlying coma. SD is associated with a sudden loss of ion, notably K+, homeostasis in the central nervous system. The sensitivity of an insect's nervous system to stress (e.g., anoxia) can be modulated by acute pre-treatment. Rapid cold hardening (RCH) is a form of preconditioning, in which a brief exposure to low temperature can enhance the stress tolerance of insects. We used a pharmacological approach to investigate whether RCH affects anoxia-induced SD in the locust, Locusta migratoria, via one or more of the following homeostatic mechanisms: (1) Na+/K+-ATPase (NKA), (2) Na+/K+/2Cl- co-transporter (NKCC), and (3) voltage-gated K+ (Kv) channels. We also assessed abundance and phosphorylation of NKCC using immunoblotting. We found that inhibition of NKA or Kv channels delayed the onset of anoxia-induced SD in both control and RCH preparations. However, NKCC inhibition preferentially abrogated the effect of RCH. Additionally, we observed a higher abundance of NKCC in RCH preps but no statistical difference in its phosphorylation level, indicating the involvement of NKCC expression or degradation as part of the RCH mechanism.


Subject(s)
Central Nervous System , Locusta migratoria , Animals , Hypoxia , Adenosine Triphosphatases , Cold Temperature
6.
Curr Opin Insect Sci ; 58: 101055, 2023 08.
Article in English | MEDLINE | ID: mdl-37201631

ABSTRACT

Exposure to cold causes insects to enter a chill coma at species-specific temperatures and such temperature sensitivity contributes to geographic distribution and phenology. Coma results from abrupt spreading depolarization (SD) of neural tissue in the integrative centers of the central nervous system (CNS). SD abolishes neuronal signaling and the operation of neural circuits, like an off switch for the CNS. Turning off the CNS by allowing ion gradients to collapse will conserve energy and may offset negative consequences of temporary immobility. SD is modified by prior experience via rapid cold hardening (RCH) or cold acclimation that alter properties of Kv channels, Na+/K+-ATPase, and Na+/K+/2Cl- cotransporter. The stress hormone octopamine mediates RCH. Future progress depends on developing a more complete understanding of ion homeostasis in and of the insect CNS.


Subject(s)
Central Nervous System , Coma , Animals , Temperature , Central Nervous System/physiology , Brain , Insecta
7.
J Endocrinol ; 258(2)2023 08 01.
Article in English | MEDLINE | ID: mdl-37227172

ABSTRACT

Glucagon is a peptide hormone that is produced primarily by the alpha cells in the islet of Langerhans in the pancreas, but also in intestinal enteroendocrine cells and in some neurons. Approximately 100 years ago, several research groups discovered that pancreatic extracts would cause a brief rise in blood glucose before they observed the decrease in glucose attributed to insulin. An overall description of the regulation of glucagon secretion requires the inclusion of its sibling insulin because they both are made primarily by the islet and they both regulate each other in different ways. For example, glucagon stimulates insulin secretion, whereas insulin suppresses glucagon secretion. The mechanism of action of glucagon on insulin secretion has been identified as a trimeric guanine nucleotide-binding protein (G-protein)-mediated event. The manner in which insulin suppresses glucagon release from the alpha cell is thought to be highly dependent on the peri-portal circulation of the islet through which blood flows downstream from beta cells to alpha cells. In this scenario, it is via the circulation that insulin is thought to suppress the release of glucagon. However, high levels of glucose also have been shown to suppress glucagon secretion. Consequently, the glucose-lowering effect of insulin may be additive to the direct effects of insulin to suppress alpha cell function, so that in vivo both the discontinuation of the insulin signal and the condition of low glucose jointly are responsible for induction of glucagon secretion.


Subject(s)
Glucagon-Secreting Cells , Islets of Langerhans , Glucagon/metabolism , Islets of Langerhans/metabolism , Glucagon-Like Peptide 1/metabolism , Insulin/metabolism , Glucose/metabolism
8.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834496

ABSTRACT

This perspective examines the proposition that chronically elevated blood glucose levels caused by type 2 diabetes (T2D) harm body tissues by locally generating reactive oxygen species (ROS). A feed-forward scenario is described in which the initial onset of defective beta cell function T2D becomes sustained and causes chronic elevations in blood glucose, which flood metabolic pathways throughout the body, giving rise to abnormally high local levels of ROS. Most cells can defend themselves via a full complement of antioxidant enzymes that are activated by ROS. However, the beta cell itself does not contain catalase or glutathione peroxidases and thereby runs a greater risk of ROS-induced damage. In this review, previously published experiments are revisited to examine the concept that chronic hyperglycemia can lead to oxidative stress in the beta cell, how this relates to the absence of beta cell glutathione peroxidase (GPx) activity, and whether this deficiency might be ameliorated by genetic enrichment of beta cell GPx and by oral antioxidants, including ebselen, a GPx mimetic.


Subject(s)
Antioxidants , Diabetes Mellitus, Type 2 , Animals , Antioxidants/pharmacology , Diabetes Mellitus, Type 2/metabolism , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Blood Glucose , Glutathione Peroxidase/metabolism , Models, Animal
9.
J Endocr Soc ; 7(3): bvac178, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36632484

ABSTRACT

Context: Chronic exposure of pancreatic islets to elevated glucose levels causes progressive declines in beta cell Pdx-1 and insulin gene expression, and glucose-induced insulin secretion. This has been shown to be associated with excessive islet reactive oxygen species and consequent damage to beta cell function, a process termed glucose toxicity. In short-term rodent in vivo studies, Nrf2 (Kelch-like ECH-associated protein 1:nuclear factor erythroid-derived-2 related factor complex) has been shown to play a central role in defending beta cells from oxidative damage via activation of antioxidant gene expression. Objective: The current studies were primarily designed to examine the behavior of Nrf2 gene expression during longer term exposure of beta cells to glucose toxicity. Methods and Results: We provide evidence that gene expression of Nrf2 in HIT-T15 cells, an insulin-secreting beta-cell line, undergoes a biphasic response characterized by an initial decrease followed by increased expression during prolonged culturing of these cells in a physiologic (0.8 mM) but not a supraphysiologic (16.0 mM) glucose concentration. This was associated with a slight rise in HO-1 gene expression. Pdx-1 and insulin mRNA levels also decreased but then stabilized in late passages of cells that had been cultured in low glucose concentrations. Conclusion: These complex events support the concept that Nrf2 gene expression plays an important regulatory role in defending beta cells during prolonged exposure to oxidative stress.

10.
J Exp Biol ; 225(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36477887

ABSTRACT

Most insects can acclimate to changes in their thermal environment and counteract temperature effects on neuromuscular function. At the critical thermal minimum, a spreading depolarization (SD) event silences central neurons, but the temperature at which this event occurs can be altered through acclimation. SD is triggered by an inability to maintain ion homeostasis in the extracellular space in the brain and is characterized by a rapid surge in extracellular K+ concentration, implicating ion pump and channel function. Here, we focused on the role of the Na+/K+-ATPase specifically in lowering the SD temperature in cold-acclimated Drosophila melanogaster. After first confirming cold acclimation altered SD onset, we investigated the dependency of the SD event on Na+/K+-ATPase activity by injecting the inhibitor ouabain into the head of the flies to induce SD over a range of temperatures. Latency to SD followed the pattern of a thermal performance curve, but cold acclimation resulted in a left-shift of the curve to an extent similar to its effect on the SD temperature. With Na+/K+-ATPase activity assays and immunoblots, we found that cold-acclimated flies have ion pumps that are less sensitive to temperature, but do not differ in their overall abundance in the brain. Combined, these findings suggest a key role for plasticity in Na+/K+-ATPase thermal sensitivity in maintaining central nervous system function in the cold, and more broadly highlight that a single ion pump can be an important determinant of whether insects can respond to their environment to remain active at low temperatures.


Subject(s)
Cold Temperature , Drosophila melanogaster , Animals , Temperature , Drosophila melanogaster/physiology , Acclimatization/physiology , Adenosine Triphosphatases , Sodium-Potassium-Exchanging ATPase/metabolism
11.
Nat Commun ; 13(1): 4129, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840594

ABSTRACT

A critical challenge during volcanic emergencies is responding to rapid changes in eruptive behaviour. Actionable advice, essential in times of rising uncertainty, demands the rapid synthesis and communication of multiple datasets with prognoses. The 2020-2021 eruption of La Soufrière volcano exemplifies these challenges: a series of explosions from 9-22 April 2021 was preceded by three months of effusive activity, which commenced with a remarkably low level of detected unrest. Here we show how the development of an evolving conceptual model, and the expression of uncertainties via both elicitation and scenarios associated with this model, were key to anticipating this transition. This not only required input from multiple monitoring datasets but contextualisation via state-of-the-art hazard assessments, and evidence-based knowledge of critical decision-making timescales and community needs. In addition, we share strategies employed as a consequence of constraints on recognising and responding to eruptive transitions in a resource-constrained setting, which may guide similarly challenged volcano observatories worldwide.


Subject(s)
Disasters , Volcanic Eruptions
12.
J Exp Biol ; 225(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35673989

ABSTRACT

Rapid cold hardening (RCH) is a type of phenotypic plasticity that delays the occurrence of chill coma in insects. Chill coma is mediated by a spreading depolarization of neurons and glia in the CNS, triggered by a failure of ion homeostasis. We used biochemical and electrophysiological approaches in the locust, Locusta migratoria, to test the hypothesis that the protection afforded by RCH is mediated by activation of the Na+/K+-ATPase (NKA) in neural tissue. RCH did not affect NKA activity measured in a biochemical assay of homogenized thoracic ganglia. However, RCH hyperpolarized the axon of a visual interneuron (DCMD) and increased the amplitude of an activity-dependent hyperpolarization (ADH) shown previously to be blocked by ouabain. RCH also improved performance of the visual circuitry presynaptic to DCMD to minimize habituation and increase excitability. We conclude that RCH enhances in situ NKA activity in the nervous system but also affects other neuronal properties that promote visual processing in locusts.


Subject(s)
Locusta migratoria , Adenosine Triphosphatases , Animals , Axons , Cold Temperature , Coma , Homeostasis/physiology , Locusta migratoria/physiology
13.
Phys Rev Lett ; 128(23): 232501, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35749172

ABSTRACT

The Baksan Experiment on Sterile Transitions (BEST) was designed to investigate the deficit of electron neutrinos ν_{e} observed in previous gallium-based radiochemical measurements with high-intensity neutrino sources, commonly referred to as the "gallium anomaly," which could be interpreted as evidence for oscillations between ν_{e} and sterile neutrino (ν_{s}) states. A 3.414-MCi ^{51}Cr ν_{e} source was placed at the center of two nested Ga volumes and measurements were made of the production of ^{71}Ge through the charged current reaction, ^{71}Ga(ν_{e},e^{-})^{71}Ge, at two average distances. The measured production rates for the inner and the outer targets, respectively, are [54.9_{-2.4}^{+2.5}(stat)±1.4(syst)] and [55.6_{-2.6}^{+2.7}(stat)±1.4(syst)] atoms of ^{71}Ge/d. The ratio (R) of the measured rate of ^{71}Ge production at each distance to the expected rate from the known cross section and experimental efficiencies are R_{in}=0.79±0.05 and R_{out}=0.77±0.05. The ratio of the outer to the inner result is 0.97±0.07, which is consistent with unity within uncertainty. The rates at each distance were found to be similar, but 20%-24% lower than expected, thus reaffirming the anomaly. These results are consistent with ν_{e}→ν_{s} oscillations with a relatively large Δm^{2} (>0.5 eV^{2}) and mixing sin^{2}2θ (≈0.4).

14.
Front Physiol ; 13: 852919, 2022.
Article in English | MEDLINE | ID: mdl-35530504

ABSTRACT

Cyclic guanosine monophosphate (cGMP) modulates the speed of recovery from anoxia in adult Drosophila and mediates hypoxia-related behaviors in larvae. Cyclic nucleotide-gated channels (CNG) and cGMP-activated protein kinase (PKG) are two cGMP downstream targets. PKG is involved in behavioral tolerance to hypoxia and anoxia in adults, however little is known about a role for CNG channels. We used a CNGL (CNG-like) mutant with reduced CNGL transcripts to investigate the contribution of CNGL to the hypoxia response. CNGL mutants had reduced locomotor activity under normoxia. A shorter distance travelled in a standard locomotor assay was due to a slower walking speed and more frequent stops. In control flies, hypoxia immediately reduced path length per minute. Flies took 30-40 min in normoxia for >90% recovery of path length per minute from 15 min hypoxia. CNGL mutants had impaired recovery from hypoxia; 40 min for ∼10% recovery of walking speed. The effects of CNGL mutation on locomotor activity and recovery from hypoxia were recapitulated by pan-neuronal CNGL knockdown. Genetic manipulation to increase cGMP in the CNGL mutants increased locomotor activity under normoxia and eliminated the impairment of recovery from hypoxia. We conclude that CNGL channels and cGMP signaling are involved in the control of locomotor activity and the hypoxic response of adult Drosophila.

15.
Neurocrit Care ; 37(Suppl 1): 83-101, 2022 06.
Article in English | MEDLINE | ID: mdl-35257321

ABSTRACT

BACKGROUND: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.


Subject(s)
Brain Injuries , Cortical Spreading Depression , Stroke , Brain Injuries/therapy , Consensus , Cortical Spreading Depression/physiology , Glutamic Acid , Humans
16.
Neurocrit Care ; 37(Suppl 1): 11-30, 2022 06.
Article in English | MEDLINE | ID: mdl-35194729

ABSTRACT

BACKGROUND: Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s METHODS: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. RESULTS: Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. CONCLUSIONS: Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.


Subject(s)
Brain Injuries , Brain Ischemia , Cortical Spreading Depression , Brain , Brain Ischemia/drug therapy , Cortical Spreading Depression/physiology , Glutamic Acid , Humans , Ischemia
17.
J Inj Violence Res ; 14(1): 115-124, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35137693

ABSTRACT

BACKGROUND: The precision of emergency medical services (EMS) triage criteria dictates whether an injured patient receives appropriate care. The trauma triage protocol is a decision scheme that groups patients into triage categories of major, moderate and minor. We hypothesized that there is a difference between trauma triage category and injury severity score (ISS). METHODS: This retrospective, observational study was conducted to investigate a difference between trauma triage category and ISS. Bivariate analysis was used to test for differences between the subgroup means. The differences between the group means on each measure were analyzed for direction and statistical significance using ANOVA for continuous variables and chi square tests for categorical variables. Logistic and linear regressions were performed to evaluate factors predicting mortality, ICU length of stay. RESULTS: With respect to trauma triage category, our findings indicate that minor and moderate triage categories are similar with respect to ISS, GCS, ICU LOS, hospital LOS, and mortality. However, after excluding for low impact injuries (falls), differences between the minor and moderate categories were evident when comparing to ISS, GCS, ICU LOS, and hospital LOS. Additionally, after excluding for low impact injures, ISS, ICU LOS, and hospital stay were found to correlate well with trauma triage category. CONCLUSIONS: In this retrospective, observational study significant differences were not seen when comparing ISS with the trauma triage categories of moderate and minor during our initial analysis. However, a difference was found after excluding for low impact injuries. These findings suggest that CDC criteria accurately predicts outcomes in high impact trauma.


Subject(s)
Triage , Wounds and Injuries , Centers for Disease Control and Prevention, U.S. , Humans , Injury Severity Score , Retrospective Studies , Trauma Centers , Triage/methods , United States , Wounds and Injuries/therapy
18.
J Insect Physiol ; 137: 104360, 2022.
Article in English | MEDLINE | ID: mdl-35041846

ABSTRACT

Rapid cold hardening (RCH) is a short-term hormesis that occurs in many invertebrate species, especially in insects. Although RCH is best known as enhancing cold tolerance, it can also enhance anoxic tolerance. When exposed to prolonged anoxia, insects enter a reversible coma, which is associated with spreading depolarization (SD) in the central nervous system (CNS). In this study, we investigated the effects of RCH and octopamine (OA) on anoxia-induced SD in L. migratoria. OA is an insect stress hormone that has roles in many physiological processes. Thus, we hypothesized that OA is involved in the mechanism of RCH. First, we found that RCH affects the K+ sensitivity of the locust blood brain barrier (BBB) in a way similar to the previously described effects of OA. Next, using SD as an indicator of anoxia-induced coma, we took a pharmacological approach to investigate the effects of OA and epinastine (EP), an octopaminergic receptor (OctR) antagonist. We found that OA mimics, whereas EP blocks, the effect of RCH on anoxia-induced SD. This study demonstrates that OA is involved in the mechanism of RCH in delaying the onset of anoxia-induced locust coma and contributes to determining the mechanism of RCH that modulates insect stress tolerances.


Subject(s)
Locusta migratoria , Acclimatization , Animals , Central Nervous System/metabolism , Cold Temperature , Coma/metabolism , Hypoxia/metabolism , Locusta migratoria/physiology , Octopamine/metabolism
19.
Accid Anal Prev ; 160: 106324, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34371287

ABSTRACT

The COVID-19 pandemic has led to the implementation of unprecedented public health measures. The effect of these lockdown measures on road safety remain to be fully understood, however preliminary data shows reductions in traffic volume and increases in risky driving behaviors. The objective of the present study is to compare self-reported risky driving behaviors (speeding, distracted driving, drinking and driving, and drugged driving) during the pandemic in Canada and the U.S. to determine what differences exist between these two countries. Data was collected using the Road Safety Monitor (RSM), an annual online public opinion survey that investigates key road safety issues, administered to a representative sample of N = 1,500 Canadian drivers and N = 1,501 U.S. drivers. Respondents were asked about the likelihood of engaging in risky driving during the pandemic as compared to before COVID-19. Results show the majority of respondents indicated their behavior did not change, and most positively, a small proportion reported they were less likely to engage in these risky driving behaviors. However, notable proportions indicated they were more likely to engage in risky driving behaviors during the pandemic, as compared to before COVID-19. Of those who indicated this, U.S. drivers had significantly higher percentages compared to their Canadian counterparts. Behaviors most often reported by this sub-section of drivers who admit to being more likely to engage in risky driving during the pandemic were speeding (7.6%) and drinking and driving (7.6%) in the U.S., and speeding (5.5%) and distracted driving (4.2%) in Canada. Logistic regression results confirm that country was a significant factor, as U.S. drivers had greater odds of reporting they were more likely to engage in these risky driving behaviors, with the exception of speeding. Age also had a significant effect, as increasing age was associated with lower odds of reporting that these risky driving behaviors were more likely during the pandemic. Conversely, sex did not have a significant effect. Overall, the current findings suggest that a small proportion of drivers reported being more likely to engage in risky driving behaviors and the pandemic may have led to changes in the profiles of those drivers engaging in risky driving behaviors during lockdown measures. These results have important implications for policies and can inform how to manage road safety during future lockdowns.


Subject(s)
Automobile Driving , COVID-19 , Accidents, Traffic/prevention & control , Canada/epidemiology , Communicable Disease Control , Humans , Pandemics , Risk-Taking , SARS-CoV-2 , United States/epidemiology
20.
J Clin Med ; 10(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209541

ABSTRACT

The Food and Drug Administration (FDA) has been regulating human islets for allotransplantation as a biologic drug in the US. Consequently, the requirement of a biological license application (BLA) approval before clinical use of islet transplantation as a standard of care procedure has stalled the development of the field for the last 20 years. Herein, we provide our commentary to the multiple FDA's position papers and guidance for industry arguing that BLA requirement has been inappropriately applied to allogeneic islets, which was delivered to the FDA Cellular, Tissue and Gene Therapies Advisory Committee on 15 April 2021. We provided evidence that BLA requirement and drug related regulations are inadequate in reassuring islet product quality and potency as well as patient safety and clinical outcomes. As leaders in the field of transplantation and endocrinology under the "Islets for US Collaborative" designation, we examined the current regulatory status of islet transplantation in the US and identified several anticipated negative consequences of the BLA approval. In our commentary we also offer an alternative pathway for islet transplantation under the regulatory framework for organ transplantation, which would address deficiencies of in current system.

SELECTION OF CITATIONS
SEARCH DETAIL
...