Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 33(6): e4996, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747383

ABSTRACT

The Sec61 translocon allows the translocation of secretory preproteins from the cytosol to the endoplasmic reticulum lumen during polypeptide biosynthesis. These proteins possess an N-terminal signal peptide (SP) which docks at the translocon. SP mutations can abolish translocation and cause diseases, suggesting an essential role for this SP/Sec61 interaction. However, a detailed biophysical characterization of this binding is still missing. Here, optical tweezers force spectroscopy was used to characterize the kinetic parameters of the dissociation process between Sec61 and the SP of prepro-alpha-factor. The unbinding parameters including off-rate constant and distance to the transition state were obtained by fitting rupture force data to Dudko-Hummer-Szabo models. Interestingly, the translocation inhibitor mycolactone increases the off-rate and accelerates the SP/Sec61 dissociation, while also weakening the interaction. Whereas the translocation deficient mutant containing a single point mutation in the SP abolished the specificity of the SP/Sec61 binding, resulting in an unstable interaction. In conclusion, we characterize quantitatively the dissociation process between the signal peptide and the translocon, and how the unbinding parameters are modified by a translocation inhibitor.


Subject(s)
Optical Tweezers , SEC Translocation Channels , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Kinetics , Protein Binding , Protein Sorting Signals , Protein Transport , SEC Translocation Channels/chemistry , SEC Translocation Channels/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism
2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569251

ABSTRACT

The BcWCL1 protein is a blue-light photoreceptor from the fungus Botrytis cinerea. This protein has a central role in B. cinerea circadian regulation and is an ortholog to WC-1 from Neurospora crassa. The BcWCL1 and WC-1 proteins have similar protein domains, including a LOV (Light Oxygen Voltage) domain for light sensing, two PAS (Per Arnt Sim) domains for protein-protein interaction, and a DNA binding domain from the GATA family. Recently, the blue-light response of BcWCL1 was demonstrated in a version without PAS domains (BcWCL1PAS∆). Here, we demonstrated that BcWCL1PAS∆ is capable of self-dimerization through its N-terminal region upon blue-light stimulation. Interestingly, we observed that BcWCL1PAS∆ enables transcriptional activation as a single component in yeast. By using chimeric transcription factors and the luciferase reporter gene, we assessed the transcriptional activity of different fragments of the N-terminal and C-terminal regions of BcWCL1PAS∆, identifying a functional transcriptional activation domain (AD) in the N-terminal region that belongs to the 9aaTAD family. Finally, we determined that the transcriptional activation levels of BcWCL1PAS∆ AD are comparable to those obtained with commonly used ADs in eukaryotic cells (Gal4 and p65). In conclusion, the BcWCL1PAS∆ protein self-dimerized and activated transcription in a blue-light-dependent fashion, opening future applications of this photoreceptor in yeast optogenetics.


Subject(s)
Saccharomyces cerevisiae , Transcription Factors , Saccharomyces cerevisiae/metabolism , Dimerization , Transcriptional Activation , Transcription Factors/metabolism , Light
3.
Q Rev Biophys ; 55: e8, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35946323

ABSTRACT

Biomolecular interactions are at the base of all physical processes within living organisms; the study of these interactions has led to the development of a plethora of different methods. Among these, single-molecule (in singulo) experiments have become relevant in recent years because these studies can give insight into mechanisms and interactions that are hidden for ensemble-based (in multiplo) methods. The focus of this review is on optical tweezer (OT) experiments, which can be used to apply and measure mechanical forces in molecular systems. OTs are based on optical trapping, where a laser is used to exert a force on a dielectric bead; and optically trap the bead at a controllable position in all three dimensions. Different experimental approaches have been developed to study protein­protein interactions using OTs, such as: (1) refolding and unfolding in trans interaction where one protein is tethered between the beads and the other protein is in the solution; (2) constant force in cis interaction where each protein is bound to a bead, and the tension is suddenly increased. The interaction may break after some time, giving information about the lifetime of the binding at that tension. And (3) force ramp in cis interaction where each protein is attached to a bead and a ramp force is applied until the interaction breaks. With these experiments, parameters such as kinetic constants (koff, kon), affinity values (KD), energy to the transition state ΔG≠, distance to the transition state Δx≠ can be obtained. These parameters characterize the energy landscape of the interaction. Some parameters such as distance to the transition state can only be obtained from force spectroscopy experiments such as those described here.


Subject(s)
Optical Tweezers , Proteins , Biophysical Phenomena , Cell Communication , Kinetics , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...