Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chemosphere ; 358: 142141, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677605

ABSTRACT

Elevated per- and polyfluoroalkyl substance (PFAS) concentrations have been reported in municipal solid waste (MSW) landfill leachate with higher levels in wet and warmer subtropical climates. Information about landfill leachate characteristics is much more limited in tropical climates. In this study, 20 landfill leachate samples were collected from three MSW landfills on the tropical island of Puerto Rico and results were compared against landfills nationally and within Florida, USA. The samples collected in Puerto Rico underwent physical-chemical analysis, as well as a quantitative analysis of 92 PFAS. Samples described in this study include discrete leachate types, such as leachate, gas condensate, and leachate which has undergone on-site treatment (e.g., RO treatment, phytoremediation, lagoons). A total of 51 PFAS were detected above quantitation limits, including perfluorohexylphosphonic acid, a perfluoroalkyl acid (PFAA) which has not been reported previously in landfill leachate. ∑PFAS concentrations in this study (mean: 38,000 ng L-1), as well as concentrations of individual PFAS, are significantly higher than other reported MSW landfill leachate concentrations. The profiles of leachates collected from on-site treatment systems indicate possible transformation of precursor PFAS as a result of treatment processes - oxidizing conditions, for example, may facilitate aerobic transformation, increase the concentrations of PFAAs, and possibly increase the apparent ∑PFAS concentration. Extreme climate events, including rising temperatures and more frequent hurricanes, have placed additional strain on the solid waste management infrastructure on the island - adding complexity to an already challenging PFAS management issue. As concern grows over PFAS contamination in drinking water, these findings should inform solid waste and leachate management decisions in order to minimize PFAS emissions in island environments.


Subject(s)
Environmental Monitoring , Fluorocarbons , Solid Waste , Waste Disposal Facilities , Water Pollutants, Chemical , Puerto Rico , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Solid Waste/analysis , Refuse Disposal , Florida
2.
Waste Manag ; 180: 125-134, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38564913

ABSTRACT

Composting municipal food waste is a key strategy for beneficially reusing methane-producing waste that would otherwise occupy landfill space. However, land-applied compost can cycle per- and polyfluoroalkyl substances (PFAS) back into the food supply and the environment. We partnered with a pilot-scale windrow composting facility to investigate the sources and fate of 40 PFAS in food waste compost. A comparison of feedstock materials yielded concentrations of ∑PFAS under 1 ng g-1 in mulch and food waste and at 1380 ng g-1 in leachate from used compostable food contact materials. Concentrations of targeted ∑PFAS increased with compost maturity along the windrow (1.85-23.1 ng g-1) and in mature stockpiles of increasing curing age (12.6-84.3 ng g-1). Among 15 PFAS quantified in compost, short-chain perfluorocarboxylic acids (PFCAs) - C5 and C6 PFCAs in particular - led the increasing trend, suggesting biotransformation of precursor PFAS into these terminal PFAS through aerobic decomposition. Several precursor PFAS were also measured, including fluorotelomer carboxylic acids (FTCAs) and polyfluorinated phosphate diesters (PAPs). However, since most targeted analytical methods and proposed regulations prioritize terminal PFAS, testing fully matured compost would provide the most relevant snapshot of PFAS that could be land applied. In addition, removing co-disposed food contact materials from the FW feedstock onsite yielded only a 37 % reduction of PFAS loads in subsequent compost, likely due to PFAS leaching during co-disposal. Source-separation of food contact materials is currently the best management practice for meaningful reduction of PFAS in food waste composts intended for land application.


Subject(s)
Composting , Fluorocarbons , Refuse Disposal , Water Pollutants, Chemical , Food Loss and Waste , Food , Water Pollutants, Chemical/analysis , Waste Disposal Facilities , Fluorocarbons/analysis , Fluorocarbons/metabolism
3.
Waste Manag ; 161: 187-192, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36893712

ABSTRACT

This study investigated the behavior of per- and polyfluoroalkyl substances (PFAS) in multiple pilot-scale vertical flow constructed wetlands (VFCW) treating landfill leachate. Eight pilot-scale VFCW columns planted with Typha latifolia or Scirpus Californicus were fed untreated municipal solid waste (MSW) landfill leachate that was diluted with potable water at a 1:10 ratio (1 part leachate to 10 parts total) at a fixed daily hydraulic loading rate of 0.525 m d-1. Ninety-two PFAS were examined and 18 PFAS were detected at quantifiable concentrations (7 precursor species and 11 terminal species). The average concentration of Σ92 PFAS in the influent was 3,100 ng L-1, which corresponded with minimal reduction in the effluents from the four VFCW (decreases ranged from 1% to 12% on average for Σ18 PFAS); however, precursors 6:3 FTCA, 7:3 FTCA, N-MeFOSAA, and N-EtFOSAA concentrations decreased significantly in the VFCW effluents, and significant decreases in the concentrations of these PFAA-precursors were concurrent with a significant increase in concentrations of five PFAAs (PFBA, PFNA, PFBS, PFOS, and PFOSI). This trend indicates that from a regulatory perspective, standalone VFCWs are likely to produce an apparent PFAS increase, which may also be true for many other leachate treatment processes incorporating aerobic biological treatment. Additional treatment to address PFAS should be integrated prior to the use of any system, including VFCWs, for the treatment of constituents of concern in MSW landfill leachate.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Wetlands , Solid Waste , Fluorocarbons/analysis
4.
Environ Sci Technol ; 57(9): 3825-3832, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36749308

ABSTRACT

Wastewater treatment plants generate a solid waste known as biosolids. The most common management option for biosolids is to beneficially reuse them as an agricultural amendment, but because of the risk of pathogen exposure, many regulatory bodies require pathogen reduction before biosolids reuse. Per- and polyfluoroalkyl substances (PFAS) are well documented in biosolids, but limited information is available on how biosolids treatment processes impact PFAS. Furthermore, quantification of PFAS has focused on perfluoroalkyl acids (PFAAs) which are a small fraction of thousands of PFAS known to exist. The objective of this study was to quantify 92 PFAS in biosolids collected from eight biosolids treatment facilities before and after four pathogen treatment applications: composting, heat treatment, lime treatment, and anaerobic digestion. Overall, total PFAS concentrations before and after treatment were dominated by PFAA precursor species, in particular, diPAPs which accounted for a majority of the mass of the Σ92PFAS. This differs from historic data that found PFAAs, primarily PFOS, to dominate total PFAS concentrations. Treatment options such as heat treatment and composting changed the ratio of PFAA precursors to PFAAs indicating a transformation of PFAS during treatment. This study finds that PFAA precursors are likely underrepresented by other studies and make up a larger percentage of the total PFAS concentration in biosolids than previously estimated.


Subject(s)
Composting , Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Biosolids , Water Pollutants, Chemical/analysis , Agriculture
5.
J Hazard Mater ; 448: 130926, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36764258

ABSTRACT

While per- and polyfluoroalkyl substances (PFAS) have been reported extensively in municipal solid waste (MSW) landfill leachate,they have rarely been quantified in landfill gas or in discrete landfill liquids such as landfill gas condensate (LGC), and the potential for PFAS to partition to the condensate has not been reported. LGC and leachate collected from within gas wells known as gas well pump-out (GWP) from three MSW landfills underwent physical-chemical characterization and PFAS analysis to improve understanding of the conditions under which these liquids form and to illuminate PFAS behavior within landfills. LGC was observed to be clear liquid containing ammonia and alkalinity while GWP strongly resembled leachate - dark in color, high in chloride and ammonia. Notably, arsenic and antimony were found in concentrations exceeding regulatory thresholds by over two orders of magnitude in many LGC samples. LGC contained a lower average concentration of ΣPFAS (19,000 ng L) compared to GWP (56,000 ng L); however, LGC contained more diversity of PFAS, with 53 quantified compared to 44 in GWP. LGC contained proportionally more precursor PFAS than GWP, including more semi-volatile PFAS which are rarely measured in water matrices, such as fluorotelomer alcohols and perfluoroalkane sulfonamido ethanols. This study provides the first detailed comparison of these matrices to inform timely leachate management decisions.

6.
Chemosphere ; 310: 136765, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36241119

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of anthropogenic chemicals used to provide water and stain resistance in many consumer products. Their widespread use, nearly ubiquitous presence across multiple environments, and growing list of adverse health effects has raised concerns among communities. PFAS have been frequently detected and quantified globally in wastewater, groundwater, surface and drinking water; however, the presence of PFAS in swimming pool water - a unique matrix in which constituents may concentrate through evaporation and which also may present a high risk of direct human exposure - has not been reported. Here, ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS) was used to monitor 92 PFAS in 54 water samples collected from city, apartment, hotel, and personal swimming pools in six Florida cities. In total, 14 PFAS were detected with six perfluoroalkyl acids - perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA) and perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorobutane sulfonate (PFBS) - detected in every sample. PFHxA accounted for 49% of all PFAS quantified in this study. PFAS profiles were compared between sites as a function of pool type, rate of use, and geographic location. Total ΣPFAS concentrations were similar across pool types, with both the highest (633 ng/L) and lowest (1.9 ng/L) measurements found in public city pools. Between sites, higher PFAS levels were observed in city pools in Miami, Melbourne and Tampa compared to Naples, Orlando and Gainesville. Our findings highlight the potential exposure of PFAS in an underexplored and yet important exposure pathway in communities.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Humans , Fluorocarbons/analysis , Tandem Mass Spectrometry , Swimming , Water Pollutants, Chemical/analysis , Drinking Water/chemistry , Alkanesulfonic Acids/analysis
7.
Sci Total Environ ; 851(Pt 1): 158163, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35988635

ABSTRACT

Phosphogypsum (PG) samples from four distinct sources in the Southeastern US were analyzed to explore the variation in total metal content between newly generated (fresh) PG and PG disposed of in phosphogypsum stacks for different lengths of time (stack). Fresh PG exhibited greater total metal concentrations relative to stack PG, including those identified in the literature as important from a risk assessment perspective (As, Cd, Co, Cr, Cu, Pb, and Zn). The pH varied between fresh and stack PG, with some stack samples exhibiting lower pH than fresh samples, however the relationship between pH and age of sample was not linear. Stack samples with pH values similar to fresh samples possessed lower concentrations of total inorganic metals than fresh samples suggesting that process water drainage and stack location play an important role in the reusability of PG as they can affect the pH of stack PG and total inorganic metal concentrations. Overall observations show that stacking PG for three or more years prior to beneficial reuse provides a construction material with lower total metal concentrations than fresh PG.


Subject(s)
Metals, Heavy , Trace Elements , Cadmium , Calcium Sulfate , Environmental Monitoring , Lead , Metals, Heavy/analysis , Phosphorus , Water
8.
Chemosphere ; 307(Pt 2): 135739, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35850227

ABSTRACT

Antimony is used extensively in consumer goods, including single use plastic bottles, electronics, textiles and automobile brakes, which are disposed of in landfills at the end of their service lives. As a result, Sb is a constituent of concern in landfill emissions. Previous research has focused on leachate (liquid) and waste incineration flue gas emissions; however, Sb has the potential to volatilize through chemical and microbial processes within a landfill. In this study, iron-amended granular activated carbon was used to adsorb volatile metals directly from gas in a full-scale landfill gas collection system. Metals were quantified using acid digestion and ICP-AES analysis. Antimony concentrations far exceeded those previously reported, at up to 733 µg m-3 (mean: 254 µg m-3). In addition to Sb, As was also measured at high levels compared to previous research, as high as 740 µg m-3 (mean: 178 µg m-3). Using US EPA landfill and landfill gas databases, total Sb emissions via landfill gas are estimated to be approximately 27.3 kg day-1 in the US. Based on other estimates of national and global Sb emissions, this corresponds to approximately 4.5% of total US atmospheric emissions of Sb and 0.42% of global atmospheric emissions. Sb mass release via landfill gas is approximately 3.9 times higher than via leachate emissions. Although gas emissions are higher than expected, the vast majority (99.9%) of Sb present in landfilled MSW remains within the waste mass indefinitely. In addition to these mass release estimates, this experiment suggests that iron-amended activated carbon may offer significant metals removal from LFG, especially in the first months of new well operation.


Subject(s)
Arsenic , Refuse Disposal , Antimony , Charcoal , Iron , Methane/analysis , Plastics , Waste Disposal Facilities
9.
Environ Sci Technol ; 56(10): 6069-6077, 2022 05 17.
Article in English | MEDLINE | ID: mdl-34596397

ABSTRACT

One hundred and seventeen street sweeping samples were collected and analyzed for per- and polyfluoroalkyl substances (PFAS). Fifty-six samples were collected in one city (Gainesville, Florida) allowing for an in-depth city-wide characterization. Street sweepings from five other urban areas, (Orlando, n = 15; Key West, n = 15; Pensacola, n = 12; Tampa, n = 13; and Daytona Beach, n = 6) were analyzed to provide a city-to-city comparison of PFAS. Within our analytical workflow, 37 PFAS were quantified across all samples, while the maximum number of PFAS quantified at one site was 26. Of those PFAS quantified in Gainesville, 60% were perfluoroalkyl acids (PFAAs) and 33% were precursors to PFAA. Among the PFAAs, short-chain perfluoroalkyl carboxylic acids (PFCAs) were the dominant class representing 26% of the total PFAS by concentration. In the comparison across different urban cities, the dominant compound by concentration and frequency of detection varied; however, perfluorooctanoic acid (PFOA) and linear perfluorooctanesulfonic acid (PFOSlin) were the two PFAS that were detected the most frequently. This study documents the first-time detection of hexadecafluorosebacic acid and perfluoro-3,6,9-trioxaundecane-1,11-dioic acid within environmental samples.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Carboxylic Acids , Cities , Florida , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
10.
Environ Sci Technol Lett ; 8: 66-72, 2021.
Article in English | MEDLINE | ID: mdl-37850075

ABSTRACT

Municipal solid waste contain diverse and significant amounts of per- and polyfluoroalkyl substances (PFAS), and these compounds may transform throughout the "landfilling" process from transport through landfill degradation. Fresh vehicle leachates, from commercial and residential waste collection vehicles at a transfer station, were measured for 51 PFAS. Results were compared to PFAS levels obtained from aged landfill leachate at the disposal facility. The landfill leachate was dominated by perfluoroalkyl acids (PFAAs, including perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs); 86% of the total PFAS, by median mass concentration), while the majority of PFAS present in commercial and residential waste vehicle leachate were PFAA-precursors (70% and 56% of the total PFAS, by median mass concentration, respectively), suggesting precursor transformation to PFAAs during the course of landfill disposal. In addition, several PFAS, which are not routinely monitored-perfluoropropane sulfonic acid (PFPrS), 8-chloro-perfluoro-1-octane sulfonic acid (8Cl-PFOS), chlorinated polyfluoroether sulfonic acids (6:2, 8:2 Cl-PFESAs), sodium dodecafluoro-3H-4,8-dioxanonanoate (NaDONA), and perfluoro-4-ethylcyclohexanesulfonate (PFECHS)-were detected. Potential degradation pathways were proposed based on published studies: transformation of polyfluoroalkyl phosphate diester (diPAPs) and fluorotelomer sulfonic acids (FTS) to form PFCAs via formation of intermediate products such as fluorotelomer carboxylic acids (FTCAs).

11.
Environ Sci Technol ; 54(19): 12550-12559, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32865409

ABSTRACT

Large volumes of per- and polyfluoroalkyl substances (PFAS)-contaminated wastewaters, such as municipal solid waste landfill leachates, pose a challenge for PFAS treatment technologies in practice today. In this study, the surfactant properties of PFAS were exploited to concentrate the compounds in foam produced via the bubble aeration of landfill leachate. The effectiveness of the foaming technique for concentrating PFAS varied by compound, with a mean removal percentage (the percent difference between PFAS in leachate before and after foam removal) of 69% and a median removal percentage of 92% among the 10 replicate foaming experiments. This technique appears to be similarly effective at sequestering sulfonates and carboxylate PFAS compounds and is less effective at concentrating the smallest and largest PFAS molecules. The results of this study suggest that for the pretreatment or preconcentration of landfill leachates, foaming to sequester PFAS may provide a practical approach that could be strategically coupled to high-energy PFAS-destructive treatment technologies. The process described herein is simple and could feasibly be applied at a relatively low cost at most landfills, where leachate aeration is already commonplace.


Subject(s)
Fluorocarbons , Refuse Disposal , Water Pollutants, Chemical , Fluorocarbons/analysis , Solid Waste/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis
12.
Anal Chem ; 92(16): 11186-11194, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32806901

ABSTRACT

Thousands of per- and polyfluoroalkyl substances (PFAS) exist in the environment and pose a potential health hazard. Suspect and nontarget screening with liquid chromatography (LC)-high-resolution tandem mass spectrometry (HRMS/MS) can be used for comprehensive characterization of PFAS. To date, no automated open source PFAS data analysis software exists to mine these extensive data sets. We introduce FluoroMatch, which automates file conversion, chromatographic peak picking, blank feature filtering, PFAS annotation based on precursor and fragment masses, and annotation ranking. The software library currently contains ∼7 000 PFAS fragmentation patterns based on rules derived from standards and literature, and the software automates a process for users to add additional compounds. The use of intelligent data-acquisition methods (iterative exclusion) nearly doubled the number of annotations. The software application is demonstrated by characterizing PFAS in landfill leachate as well as in leachate foam generated to concentrate the compounds for remediation purposes. FluoroMatch had wide coverage, returning 27 PFAS annotations for landfill leachate samples, explaining 71% of the all-ion fragmentation (CF2)n related fragments. By improving the throughput and coverage of PFAS annotation, FluoroMatch will accelerate the discovery of PFAS posing significant human risk.


Subject(s)
Hydrocarbons, Fluorinated/analysis , Algorithms , Chromatography, Liquid/statistics & numerical data , Hydrocarbons, Fluorinated/chemistry , Small Molecule Libraries/chemistry , Software , Tandem Mass Spectrometry/statistics & numerical data , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
13.
Waste Manag ; 87: 731-740, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-31109576

ABSTRACT

Construction and demolition (C&D) wood can be recycled as mulch for landscaping or cogeneration. Limitations to such recycling are dependent on metals concentrations in mulch (As, Cu, and Cr) from the inclusion of waterborne-preservative treated wood. The objective of this study was to evaluate the amount of waterborne-preservative treated wood (by wood volume and by mass of metal) that enters the C&D wood waste stream in the U.S. by utilizing a mass balance approach. A model was developed using wood treatment industry production statistics, estimated leaching rates of metal-based preservatives, and typical service lives of wood products. Outputs of the model indicate that the volumes of waterborne preservative treated wood disposed of may exceed 16 million m3 per year by 2030. The peak yearly metal mass disposed of corresponded to 18,400 metric tons for arsenic and 24,500 tons of chromium in 2013. Given the current trends in production, the mass of copper disposed of will increase to 20,900 tons by 2030. In order to meet regulatory guidelines regarding metals in recycled C&D wood, waterborne-preservative treated wood must be separated and removed. This separation mitigates environmental contamination from wood preservatives such as chromated copper arsenate (CCA).


Subject(s)
Arsenic , Arsenates , Chromium , Copper , Environmental Pollution , Wood
14.
Environ Pollut ; 242(Pt B): 1198-1205, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30118908

ABSTRACT

A limitation to recycling wood from construction and demolition (C&D) waste is contamination of metals from the inadvertent inclusion of preservative treated wood, in particular wood treated with chromated copper arsenate (CCA) and newer copper-based formulations. To minimize contamination many regions have developed best management practices (BMPs) for separating treated from untreated wood. The objective of this study was to evaluate the fraction of preservative treated wood in recycled C&D wood after the implementation of BMPs, using Florida as a case study. Methods involved collecting recycled C&D wood samples from throughout the state, measuring metals concentrations (As, Cu, and Cr) in the samples to compute the fraction of recycled wood treated with waterborne wood preservatives, and comparing measurements with those taken prior to the formalization of BMPs. Metals concentrations were measured using two methods, one based on traditional laboratory digestion methods and another using a more rapid hand-held X-ray Fluorescence (XRF) device in the field. The proportion of waterborne preservative-treated wood in recycled wood products has reduced significantly in the intervening 20 years (from 6% to 2.9%), and the fraction of CCA-treated wood has been reduced even further, to 1.4%. The remaining fraction of waterborne preservative-treated wood is comprised of new formulations of copper-based preservatives. This suggests that restrictions from the wood preservation industry and best management practices implemented at recycling facilities have been effective in reducing heavy metal contamination from pressure treated lumber in recycled wood products.


Subject(s)
Construction Materials/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Metals, Heavy/analysis , Recycling , Wood/chemistry , Arsenates , Copper , Florida
SELECTION OF CITATIONS
SEARCH DETAIL
...