Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Technol Ther ; 22(8): 594-601, 2020 08.
Article in English | MEDLINE | ID: mdl-32119790

ABSTRACT

Objective: To assess the safety and efficacy of a simplified initialization for the Tandem t:slim X2 Control-IQ hybrid closed-loop system, using parameters based on total daily insulin ("MyTDI") in adolescents with type 1 diabetes under usual activity and during periods of increased exercise. Research Design and Methods: Adolescents with type 1 diabetes 12-18 years of age used Control-IQ for 5 days at home using their usual parameters. Upon arrival at a 60-h ski camp, participants were randomized to either continue Control-IQ using their home settings or to reinitialize Control-IQ with MyTDI parameters. Control-IQ use continued for 5 days following camp. The effect of MyTDI on continuous glucose monitoring outcomes were analyzed using repeated measures analysis of variance (ANOVA): baseline, camp, and at home. Results: Twenty participants were enrolled and completed the study; two participants were excluded from the analysis due to absence from ski camp (1) and illness (1). Time in range was similar between both groups at home and camp. A tendency to higher time <70 mg/dL in the MyTDI group was present but only during camp (median 3.8% vs. 1.4%, P = 0.057). MyTDI users with bolus/TDI ratios >40% tended to show greater time in the euglycemic range improvements between baseline and home than users with ratios <40% (+16.3% vs. -9.0%, P = 0.012). All participants maintained an average of 95% time in closed loop (84.1%-100%). Conclusions: MyTDI is a safe, effective, and easy way to determine insulin parameters for use in the Control-IQ artificial pancreas. Future modifications to account for the influence of carbohydrate intake on MyTDI calculations might further improve time in range.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin Infusion Systems , Pancreas, Artificial , Adolescent , Blood Glucose , Blood Glucose Self-Monitoring , Cross-Over Studies , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use
2.
Diabetes Technol Ther ; 21(6): 356-363, 2019 06.
Article in English | MEDLINE | ID: mdl-31095423

ABSTRACT

Background: Typically, closed-loop control (CLC) studies excluded patients with significant hypoglycemia. We evaluated the effectiveness of hybrid CLC (HCLC) versus sensor-augmented pump (SAP) in reducing hypoglycemia in this high-risk population. Methods: Forty-four subjects with type 1 diabetes, 25 women, 37 ± 2 years old, HbA1c 7.4% ± 0.2% (57 ± 1.5 mmol/mol), diabetes duration 19 ± 2 years, on insulin pump, were enrolled at the University of Virginia (N = 33) and Stanford University (N = 11). Eligibility: increased risk of hypoglycemia confirmed by 1 week of blinded continuous glucose monitor (CGM); randomized to 4 weeks of home use of either HCLC or SAP. Primary/secondary outcomes: risk for hypoglycemia measured by the low blood glucose index (LBGI)/CGM-based time in ranges. Results: Values reported: mean ± standard deviation. From baseline to the final week of study: LBGI decreased more on HCLC (2.51 ± 1.17 to 1.28 ± 0.5) than on SAP (2.1 ± 1.05 to 1.79 ± 0.98), P < 0.001; percent time below 70 mg/dL (3.9 mmol/L) decreased on HCLC (7.2% ± 5.3% to 2.0% ± 1.4%) but not on SAP (5.8% ± 4.7% to 4.8% ± 4.5%), P = 0.001; percent time within the target range 70-180 mg/dL (3.9-10 mmol/L) increased on HCLC (67.8% ± 13.5% to 78.2% ± 10%) but decreased on SAP (65.6% ± 12.9% to 59.6% ± 16.5%), P < 0.001; percent time above 180 mg/dL (10 mmol/L) decreased on HCLC (25.1% ± 15.3% to 19.8% ± 10.1%) but increased on SAP (28.6% ± 14.6% to 35.6% ± 17.6%), P = 0.009. Mean glucose did not change significantly on HCLC (144.9 ± 27.9 to 143.8 ± 14.4 mg/dL [8.1 ± 1.6 to 8.0 ± 0.8 mmol/L]) or SAP (152.5 ± 24.3 to 162.4 ± 28.2 [8.5 ± 1.4 to 9.0 ± 1.6]), P = ns. Conclusions: Compared with SAP therapy, HCLC reduced the risk and frequency of hypoglycemia, while improving time in target range and reducing hyperglycemia in people at moderate to high risk of hypoglycemia.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Diabetes Mellitus, Type 1/drug therapy , Equipment Design/methods , Hypoglycemia/prevention & control , Insulin Infusion Systems , Adult , Blood Glucose/analysis , Blood Glucose Self-Monitoring/methods , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Female , Humans , Hyperglycemia/chemically induced , Hypoglycemia/etiology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Male
3.
Diabetes Technol Ther ; 19(5): 293-298, 2017 05.
Article in English | MEDLINE | ID: mdl-28426239

ABSTRACT

BACKGROUND: Young children 5-8 years old with type 1 diabetes (T1D) exhibit clear needs for improved glycemic control but may be limited in their ability to safely interact with an artificial pancreas system. Our goal was to evaluate the safety and performance of an artificial pancreas (AP) system among young children with T1D. RESEARCH DESIGN AND METHODS: In a randomized, crossover trial, children with T1D age 5-8 years were enrolled to receive on separate study periods (in random order) either the UVa AP using the DiAs Control Platform software with child-resistant lock-out screens (followed as an out-patient admission) or their usual insulin pump+continuous glucose monitor (CGM) care at home. Hypoglycemic events and CGM tracings were compared between the two 68-h study periods. All analyses were adjusted for level of physical activity as tracked using Fitbit devices. RESULTS: Twelve participants (median age 7 years, n = 6 males) completed the trial. Compared to home care, the AP admission resulted in increased time with blood glucose (BG) 70-180 mg/dL (73% vs. 47%) and lower mean BG (152 mg/dL vs. 190 mg/dL), both P < 0.001 after adjustment for activity. Occurrence of hypoglycemia was similar between sessions without differences in time <70 mg/dL (AP 1.1% ± 1.1%; home 1.6% ± 1.2%). There were no adverse events during the AP or home study periods. CONCLUSIONS: Use of an AP in young children was safe and resulted in improved mean BG without increased hypoglycemia. This suggests that AP use in young children is safe and improves overall diabetes control. ClinicalTrials.gov registration number: NCT02750267.


Subject(s)
Blood Glucose/analysis , Diabetes Mellitus, Type 1/therapy , Hyperglycemia/prevention & control , Hypoglycemia/prevention & control , Pancreas, Artificial , Activities of Daily Living , Child , Child Behavior , Child, Preschool , Computer Security , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Exercise , Feasibility Studies , Female , Fitness Trackers , Hospitals, University , Humans , Hypoglycemia/chemically induced , Male , Outpatient Clinics, Hospital , Pancreas, Artificial/adverse effects , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL
...