Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 400: 123198, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32585513

ABSTRACT

The hazards to health and the environment associated with the transportation sector include smog, particulate matter, and greenhouse gas emissions. Conversion of lignocellulosic biomass into biofuels has the potential to provide significant amounts of infrastructure-compatible liquid transportation fuels that reduce those hazardous materials. However, the development of these technologies is inefficient, due to: (i) the lack of a priori fuel property consideration, (ii) poor shared vocabulary between process chemists and fuel engineers, and (iii) modern and future engines operating outside the range of traditional autoignition metrics such as octane or cetane numbers. In this perspective, we describe an approach where we follow a "fuel-property first" design methodology with a sequence of (i) identifying the desirable fuel properties for modern engines, (ii) defining molecules capable of delivering those properties, and (iii) designing catalysts and processes that can produce those molecules from a candidate feedstock in a specific conversion process. Computational techniques need to be leveraged to minimize expenses and experimental efforts on low-promise options. This concept is illustrated with current research information available for biomass conversion to fuels via catalytic fast pyrolysis and hydrotreating; outstanding challenges and research tools necessary for a successful outcome are presented.


Subject(s)
Biofuels , Pyrolysis , Biomass , Catalysis , Particulate Matter
2.
J Phys Chem A ; 122(28): 5911-5924, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29893563

ABSTRACT

The nascent steps in the pyrolysis of the lignin components salicylaldehyde ( o-HOC6H4CHO) and catechol ( o-HOC6H4OH) were studied in a set of heated microreactors. The microreactors are small (roughly 1 mm ID × 3 cm long); transit times through the reactors are about 100 µs. Temperatures in the microreactors can be as high as 1600 K, and pressures are typically a few hundred torr. The products of pyrolysis are identified by a combination of photoionization mass spectrometry, photoelectron photoion concidence mass spectroscopy, and matrix isolation infrared spectroscopy. The main pathway by which salicylaldehyde decomposes is a concerted fragmentation: o-HOC6H4CHO (+ M) → H2 + CO + C5H4═C═O (fulveneketene). At temperatures above 1300 K, fulveneketene loses CO to yield a mixture of HC≡C-C≡C-CH3, HC≡C-CH2-C≡CH, and HC≡C-CH═C═CH2. These alkynes decompose to a mixture of radicals (HC≡C-C≡C-CH2 and HC≡C-CH-C≡CH) and H atoms. H-atom chain reactions convert salicylaldehyde to phenol: o-HOC6H4CHO + H → C6H5OH + CO + H. Catechol has similar chemistry to salicylaldehyde. Electrocyclic fragmentation produces water and fulveneketene: o-HOC6H4OH (+ M) → H2O + C5H4═C═O. These findings have implications for the pyrolysis of lignin itself.

3.
J Phys Chem A ; 121(29): 5475-5486, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28678503

ABSTRACT

Oxygenated biofuels provide a renewable, domestic source of energy that can enable adoption of advanced, high-efficiency internal combustion engines, such as those based on homogeneously charged compression ignition (HCCI). Of key importance to such engines is the cetane number (CN) of the fuel, which is determined by the autoignition of the fuel under compression at relatively low temperatures (550-800 K). For the plethora of oxygenated biofuels possible, it is desirable to know the ignition delay times and the CN of these fuels to help guide conversion strategies so as to focus efforts on the most desirable fuels. For alkanes, the chemical pathways leading to radical chain-branching reactions giving rise to low-temperature autoignition are well-known and are highly coincident with the buildup of reactive radicals such as OH. Key in the mechanisms leading to chain branching are the addition of molecular oxygen to alkyl radicals and the rearrangement and dissociation of the resulting peroxy radials. Prediction of the temperature and pressure dependence of reactions that lead to the buildup of reactive radicals requires a detailed understanding of the potential energy surfaces (PESs) of these reactions. In this study, we used quantum mechanical modeling to systematically compare the effects of oxygen functionalities on these PESs and associated kinetics so as to understand how they affect experimental trends in autoignition and CN. The molecules studied here include pentane, pentanol, pentanal, 2-heptanone, methylpentyl ether, methyl hexanoate, and pentyl acetate. All have a saturated five-carbon alkyl chain with an oxygen functional group attached to the terminal carbon atom. The results of our systematic comparison may be summarized as follows: (1) Oxygen functionalities activate C-H bonds by lowering the bond dissociation energy (BDE) relative to alkanes. (2) The R-OO bonds in peroxy radicals adjacent to carbonyl groups are weaker than corresponding alkyl systems, leading to dissociation of ROO• radicals and reducing reactivity and hence CN. (3) Hydrogen atom transfer in peroxy radicals is important in autoignition, and low barriers for ethers and aldehydes lead to high CN. (4) Peroxy radicals formed from alcohols have low barriers to form aldehydes, which reduce the reactivity of the alkyl radical. These findings for the formation and reaction of alkyl radicals with molecular oxygen explain the trend in CN for these common biofuel functional groups.

4.
J Quant Spectrosc Radiat Transf ; 186: 118-138, 2017 01.
Article in English | MEDLINE | ID: mdl-27840454

ABSTRACT

Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditions. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for airmass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the required state-of-the-art for oxygen spectroscopy. To measure O2 A-band cross-sections with such accuracy through the full range of atmospheric pressure requires a sophisticated line-shape model (Rautian or Speed-Dependent Voigt) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, however, this work presents an integrated self-consistent model developed to ensure the best accuracy. It is also important to consider multiple sources of spectroscopic data for such a study in order to improve the dynamic range of the model and to minimize effects of instrumentation and associated systematic errors. The techniques of Fourier Transform Spectroscopy (FTS) and Cavity Ring-Down Spectroscopy (CRDS) allow complimentary information for such an analysis. We utilize multispectrum fitting software to generate a comprehensive new database with improved accuracy based on these datasets. The extensive information will be made available as a multi-dimensional cross-section (ABSCO) table and the parameterization will be offered for inclusion in the HITRANonline database.

5.
J Chem Phys ; 145(1): 014305, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27394106

ABSTRACT

Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 µs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H5 (13)CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H5 (13)CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).

6.
J Phys Chem A ; 120(3): 332-45, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26698331

ABSTRACT

We demonstrate a synthetic route toward the production of propene directly from poly(ß-hydroxybutyrate) (PHB), the most common of a wide range of high-molecular-mass microbial polyhydroxyalkanoates. Propene, a major commercial hydrocarbon, was obtained from the depolymerization of PHB and subsequent decarboxylation of the crotonic acid monomer in good yields (up to 75 mol %). The energetics of PHB depolymerization and the gas-phase decarboxylation of crotonic acid were also studied using density functional theory (DFT). The average activation energy for the cleavage of the R'C(O)O-R linkage is calculated to be 163.9 ± 7.0 kJ mol(-1). Intramolecular, autoacceleration effects regarding the depolymerization of PHB, as suggested in some literature accounts, arising from the formation of crotonyl and carboxyl functional groups in the products could not be confirmed by the results of DFT and microkinetic modeling. DFT results, however, suggest that intermolecular catalysis involving terminal carboxyl groups may accelerate PHB depolymerization. Activation energies for this process were estimated to be about 20 kJ mol(-1) lower than that for the noncatalyzed ester cleavage, 144.3 ± 6.4 kJ mol(-1). DFT calculations predict the decarboxylation of crotonic acid to follow second-order kinetics with an activation energy of 147.5 ± 6.3 kJ mol(-1), consistent with that measured experimentally, 146.9 kJ mol(-1). Microkinetic modeling of the PHB to propene overall reaction predicts decarboxylation of crotonic acid to be the rate-limiting step, consistent with experimental observations. The results also indicate that improvements made to enhance the isomerization of crotonic acid to vinylacetic acid will improve the direct conversion of PHB to propene.

7.
J Phys Chem A ; 119(46): 11397-405, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26501585

ABSTRACT

Zeolites are common catalysts for multiple industrial applications, including alcohol dehydration to produce olefins, and given their commercial importance, reaction mechanisms in zeolites have long been proposed and studied. Some proposed reaction mechanisms for alcohol dehydration exhibit noncyclic carbocation intermediates or transition states that resemble carbocations, and several previous studies suggest that the tert-butyl cation is the only noncyclic cation more stable than the corresponding chemisorbed species with the hydrocarbon bound to the framework oxygen (i.e., an alkoxide). To determine if carbocations can exist at high temperatures in zeolites, where these catalysts are finding new applications for biomass vapor-phase upgrading (∼500 °C), the stability of carbocations and the corresponding alkoxides were calculated with two ONIOM embedding methods (M06-2X/6-311G(d,p):M06-2X/3-21G) and (PBE-D3/6-311G(d,p):PBE-D3/3-21G) and plane-wave density functional theory (DFT) using the PBE functional corrected with entropic and Tkatchenko-Scheffler van der Waals corrections. The embedding methods tested are unreliable at finding minima for primary carbocations, and only secondary or higher carbocations can be described with embedding methods consistent with the periodic DFT results. The relative energy between the carbocations and alkoxides differs significantly between the embedding and the periodic DFT methods. The difference is between ∼0.23 and 14.30 kcal/mol depending on the molecule, the model, and the functional chosen for the embedding method. At high temperatures, the pw-DFT calculations predict that the allyl, isopropyl, and sec-butyl cations exhibit negligible populations while acetyl and tert-butyl cations exhibit significant populations (>10%). Moreover, the periodic DFT results indicate that mechanisms including secondary and tertiary carbocations intermediates or carbocations stabilized by adjacent oxygen or double bonds are possible at high temperatures relevant to some industrial uses of zeolite catalysts, although as the minority species in most cases.


Subject(s)
Cations/chemistry , Hot Temperature , Zeolites/chemistry , Drug Stability
8.
J Phys Chem A ; 119(15): 3604-14, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25802969

ABSTRACT

Dehydration over acidic zeolites is an important reaction class for the upgrading of biomass pyrolysis vapors to hydrocarbon fuels or to precursors for myriad chemical products. Here, we examine the dehydration of ethanol at a Brønsted acid site, T12, found in HZSM-5 using density functional theory (DFT). The geometries of both cluster and mixed quantum mechanics/molecular mechanics (QM:MM) models are prepared from the ZSM-5 crystal structure. Comparisons between these models and different DFT methods are conducted to show similar results among the models and methods used. Inclusion of the full catalyst cavity through a QM:MM approach is found to be important, since activation barriers are computed on average as 7 kcal mol(-1) lower than those obtained with a smaller cluster model. Two different pathways, concerted and stepwise, have been considered when examining dehydration and deprotonation steps. The current study shows that a concerted dehydration process is possible with a lower (4-5 kcal mol(-1)) activation barrier while previous literature studies have focused on a stepwise mechanism. Overall, this work demonstrates that fairly high activation energies (∼50 kcal mol(-1)) are required for ethanol dehydration. A concerted mechanism is favored over a stepwise mechanism because charge separation in the transition state is minimized. QM:MM approaches appear to provide superior results to cluster calculations due to a more accurate representation of charges on framework oxygen atoms.


Subject(s)
Ethanol/chemistry , Ethylenes/chemical synthesis , Quantum Theory , Water/chemistry , Zeolites/chemistry , Dehydration , Ethylenes/chemistry , Molecular Structure
9.
J Chem Phys ; 142(4): 044307, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25637987

ABSTRACT

The pyrolysis of the benzyl radical has been studied in a set of heated micro-reactors. A combination of photoionization mass spectrometry (PIMS) and matrix isolation infrared (IR) spectroscopy has been used to identify the decomposition products. Both benzyl bromide and ethyl benzene have been used as precursors of the parent species, C6H5CH2, as well as a set of isotopically labeled radicals: C6H5CD2, C6D5CH2, and C6H5 (13)CH2. The combination of PIMS and IR spectroscopy has been used to identify the earliest pyrolysis products from benzyl radical as: C5H4=C=CH2, H atom, C5H4-C ≡ CH, C5H5, HCCCH2, and HC ≡ CH. Pyrolysis of the C6H5CD2, C6D5CH2, and C6H5 (13)CH2 benzyl radicals produces a set of methyl radicals, cyclopentadienyl radicals, and benzynes that are not predicted by a fulvenallene pathway. Explicit PIMS searches for the cycloheptatrienyl radical were unsuccessful, there is no evidence for the isomerization of benzyl and cycloheptatrienyl radicals: C6H5CH2⇋C7H7. These labeling studies suggest that there must be other thermal decomposition routes for the C6H5CH2 radical that differ from the fulvenallene pathway.

10.
J Phys Chem A ; 119(28): 7222-34, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25608038

ABSTRACT

The thermal decomposition of cyclopentadienone (C5H4═O) has been studied in a flash pyrolysis continuous flow microreactor. Passing dilute samples of o-phenylene sulfite (C6H4O2SO) in He through the microreactor at elevated temperatures yields a relatively clean source of C5H4═O. The pyrolysis of C5H4═O was investigated over the temperature range 1000-2000 K. Below 1600 K, we have identified two decomposition channels: (1) C5H4═O (+ M) → CO + HC≡C-CH═CH2 and (2) C5H4═O (+ M) → CO + HC≡CH + HC≡CH. There is no evidence of radical or H atom chain reactions. To establish the thermochemistry for the pyrolysis of cyclopentadienone, ab initio electronic structure calculations (AE-CCSD(T)/aug-cc-pCVQZ//AE-CCSD(T)/cc-pVQZ and anharmonic FC-CCSD(T)/ANO1 ZPEs) were used to find ΔfH0(C5H4═O) to be 16 ± 1 kcal mol(-1) and ΔfH0(CH2═CH-C≡CH) to be 71 ± 1 kcal mol(-1). The calculations predict the reaction enthalpies ΔrxnH0(1) to be 28 ± 1 kcal mol(-1) (ΔrxnH298(1) is 30 ± 1 kcal mol(-1)) and ΔrxnH0(2) to be 66 ± 1 kcal mol(-1) (ΔrxnH298(2) is 69 ± 1 kcal mol(-1)). Following pyrolysis of C5H4═O, photoionization mass spectrometry was used to measure the relative concentrations of HCC-CHCH2 and HCCH. Reaction 1 dominates at low pyrolysis temperatures (1000-1400 K). At temperatures above 1400 K, reaction 2 becomes the dominant channel. We have used the product branching ratios over the temperature range 1000-1600 K to extract the ratios of unimolecular rate coefficients for reactions 1 and 2 . If Arrhenius expressions are used, the difference of activation energies for reactions 1 and 2 , E2 - E1, is found to be 16 ± 1 kcal mol(-1) and the ratio of the pre-exponential factors, A2/A1, is 7.0 ± 0.3.

11.
J Phys Chem A ; 119(3): 501-16, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25513721

ABSTRACT

The bimolecular thermal reactions of carboxylic acids were studied using quantum mechanical molecular modeling. Previous work1 investigated the unimolecular decomposition of a variety of organic acids, including saturated, α,ß-unsaturated, and ß,γ-unsaturated acids, and showed that the type and position of the unsaturation resulted in unique branching ratios between dehydration and decarboxylation, [H2O]/[CO2]. In this work, the effect of bimolecular chemistry (water-acid and acid-acid) is considered with a representative of each acid class. In both cases, the strained 4-centered, unimolecular transition state, typical of most organic acids, is opened up to 6- or 8-centered bimolecular geometries. These larger structures lead to a reduction in the barrier heights (20-45%) of the thermal decomposition pathways for organic acids and an increase in the decomposition kinetics. In some cases, they even cause a shift in the branching ratio of the corresponding product slates.


Subject(s)
Biofuels , Carboxylic Acids/chemistry , Temperature , Molecular Structure , Quantum Theory
12.
J Chem Phys ; 140(23): 234302, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24952536

ABSTRACT

The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH3O-C6H4-OCH3) have been studied using a high temperature, microtubular (µtubular) SiC reactor with a residence time of 100 µs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH3O-C6H4-OCH3, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C6H4-CHO) and phenol (C6H5OH). Para-CH3O-C6H4-OCH3 immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C5H4=O). Finally, the m-CH3O-C6H4-OCH3 isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C5H4=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.


Subject(s)
Benzaldehydes/chemistry , Hydrogen/chemistry , Kinetics , Lignin/chemistry , Mass Spectrometry , Molecular Structure , Phenols/chemistry
13.
J Phys Chem A ; 118(4): 708-18, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24383399

ABSTRACT

A detailed vibrational analysis of the infrared spectra of cyclopentadienone (C5H4═O) in rare gas matrices has been carried out. Ab initio coupled-cluster anharmonic force field calculations were used to guide the assignments. Flash pyrolysis of o-phenylene sulfite (C6H4O2SO) was used to provide a molecular beam of C5H4═O entrained in a rare gas carrier. The beam was interrogated with time-of-flight photoionization mass spectrometry (PIMS), confirming the clean, intense production of C5H4═O. Matrix isolation infrared spectroscopy coupled with 355 nm polarized UV for photoorientation and linear dichroism experiments was used to determine the symmetries of the vibrations. Cyclopentadienone has 24 fundamental vibrational modes, Γvib = 9a1 ⊕ 3a2 ⊕ 4b1 ⊕ 8b2. Using vibrational perturbation theory and a deperturbation-diagonalization method, we report assignments of the following fundamental modes (cm(-1)) in a 4 K neon matrix: the a1 modes of X̃ (1)A1 C5H4═O are found to be ν1 = 3107, ν2 = (3100, 3099), ν3 = 1735, ν5 = 1333, ν7 = 952, ν8 = 843, and ν9 = 651; the inferred a2 modes are ν10 = 933, and ν11 = 722; the b1 modes are ν13 = 932, ν14 = 822, and ν15 = 629; the b2 fundamentals are ν17 = 3143, ν18 = (3078, 3076) ν19 = (1601 or 1595), ν20 = 1283, ν21 = 1138, ν22 = 1066, ν23 = 738, and ν24 = 458. The modes ν4 and ν6 were too weak to be detected, ν12 is dipole-forbidden and its position cannot be inferred from combination and overtone bands, and ν16 is below our detection range (<400 cm(-1)). Additional features were observed and compared to anharmonic calculations, assigned as two quantum transitions, and used to assign some of the weak and infrared inactive fundamental vibrations.


Subject(s)
Biomass , Cyclopentanes/chemistry , Argon/chemistry , Photochemical Processes , Spectrophotometry, Infrared , Vibration
14.
J Phys Chem A ; 118(1): 260-74, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24295398

ABSTRACT

Quantum mechanical molecular modeling is used [M06-2X/6-311++G(2df,p)] to compare activation energies and rate constants for unimolecular decomposition pathways of saturated and unsaturated carboxylic acids that are important in the production of biofuels and that are models for plant and algae-derived intermediates. Dehydration and decarboxylation reactions are considered. The barrier heights to decarboxylation and dehydration are similar in magnitude for saturated acids (∼71 kcal mol(-1)), with an approximate 1:1 [H2O]/[CO2] branching ratio over the temperature range studied (500-2000 K). α,ß-Unsaturation lowers the barrier to decarboxylation between 2.2 and 12.2 kcal mol(-1) while increasing the barriers to dehydration by ∼3 kcal mol(-1). The branching ratio, as a result, is an order of magnitude smaller, [H2O]/[CO2] = 0.07. For some α,ß-unsaturated acids, six-center transition states are available for dehydration, with barrier heights of ∼35.0 kcal mol(-1). The branching ratio for these acids can be as high as 370:1. ß,γ-Unsaturation results in a small lowering in the barrier height to decarboxylation (∼70.0 kcal mol(-1)). ß,γ-Unsaturation also leads to a lowering in the dehydration pathway from 1.7 to 5.1 kcal mol(-1). These results are discussed with respect to predicted kinetic values for acids of importance in biofuels production.


Subject(s)
Biofuels , Carboxylic Acids/chemistry , Quantum Theory
15.
J Chem Phys ; 139(10): 104310, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-24050347

ABSTRACT

The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 µsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 µTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.


Subject(s)
Benzaldehydes/chemistry , Biomass , Furaldehyde/chemistry , Hot Temperature , Mass Spectrometry/methods , Spectrophotometry, Infrared/methods
16.
J Chem Phys ; 136(4): 044309, 2012 Jan 28.
Article in English | MEDLINE | ID: mdl-22299873

ABSTRACT

The pyrolyses of phenol and d(5)-phenol (C(6)H(5)OH and C(6)D(5)OH) have been studied using a high temperature, microtubular (µtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the µtubular reactor of approximately 50-100 µs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C(6)H(5)OH → c-C(6)H(6) = O → c-C(5)H(6) + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C(5)H(6) → c-C(5)H(5) + H → HC≡CH + HCCCH(2). At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C(6)H(5)O-H → C(6)H(5)O + H → c-C(5)H(5) + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C(6)H(4)-OH) and hydroquinone (p-HO-C(6)H(4)-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.


Subject(s)
Alkenes/chemistry , Cyclohexenes/chemistry , Cyclopentanes/chemistry , Phenol/chemistry , Hot Temperature , Molecular Structure , Spectrophotometry, Infrared
17.
J Phys Chem A ; 115(46): 13381-9, 2011 Nov 24.
Article in English | MEDLINE | ID: mdl-21928823

ABSTRACT

The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (µ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC µ-tubular reactor is subject to a free expansion after a residence time of approximately 50-100 µs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC(6)H(4)OCH(3) → HOC(6)H(4)O + CH(3). Decarbonylation of the HOC(6)H(4)O radical produces the hydroxycyclopentadienyl radical, C(5)H(4)OH. As the temperature of the µ-tubular reactor is raised to 1275 K, the C(5)H(4)OH radical loses a H atom to produce cyclopentadienone, C(5)H(4)═O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C(5)H(4)═O → [CO + 2 HC≡CH] or [CO + HC≡C-CH═CH(2)]. The formation of C(5)H(4)═O, HCCH, and CH(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C(6)H(5)OH in the molecular beam: C(6)H(5)OH + λ(275.1 nm) → [C(6)H(5)OH Ã] + λ(275.1nm) → C(6)H(5)OH(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH(3) + C(5)H(4)OH → [CH(3)-C(5)H(4)OH]* → C(6)H(5)OH + 2H.


Subject(s)
Acetylene/chemistry , Cyclopentanes/chemistry , Phenols/chemical synthesis , Temperature , Acetylene/analogs & derivatives , Molecular Structure , Phenols/chemistry
18.
Rev Sci Instrum ; 82(3): 033104, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21456715

ABSTRACT

We have designed and developed a laser ablation∕pulsed sample introduction∕mass spectrometry platform that integrates pyrolysis (py) and∕or laser ablation (LA) with resonance-enhanced multiphoton ionization (REMPI) reflectron time-of-flight mass spectrometry (TOFMS). Using this apparatus, we measured lignin volatilization products of untreated biomass materials. Biomass vapors are produced by either a custom-built hot stage pyrolysis reactor or laser ablation using the third harmonic of an Nd:YAG laser (355 nm). The resulting vapors are entrained in a free jet expansion of He, then skimmed and introduced into an ionization region. One color resonance-enhanced multiphoton ionization (1+1 REMPI) is used, resulting in highly selective detection of lignin subunits from complex vapors of biomass materials. The spectra obtained by py-REMPI-TOFMS and LA-REMPI-TOFMS display high selectivity and decreased fragmentation compared to spectra recorded by an electron impact ionization molecular beam mass spectrometer (EI-MBMS). The laser ablation method demonstrates the ability to selectively isolate and volatilize specific tissues within the same plant material and then detect lignin-based products from the vapors with enhanced sensitivity. The identification of select products observed in the LA-REMPI-TOFMS experiment is confirmed by comparing their REMPI wavelength scans with that of known standards.


Subject(s)
Biomass , Lasers , Lignin/analysis , Lignin/chemistry , Mass Spectrometry/instrumentation , Photons , Rotation , Volatilization
19.
J Phys Chem A ; 115(4): 428-38, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21218825

ABSTRACT

The pyrolysis of 2-phenethyl phenyl ether (PPE, C(6)H(5)C(2)H(4)OC(6)H(5)) in a hyperthermal nozzle (300-1350 °C) was studied to determine the importance of concerted and homolytic unimolecular decomposition pathways. Short residence times (<100 µs) and low concentrations in this reactor allowed the direct detection of the initial reaction products from thermolysis. Reactants, radicals, and most products were detected with photoionization (10.5 eV) time-of-flight mass spectrometry (PIMS). Detection of phenoxy radical, cyclopentadienyl radical, benzyl radical, and benzene suggest the formation of product by the homolytic scission of the C(6)H(5)C(2)H(4)-OC(6)H(5) and C(6)H(5)CH(2)-CH(2)OC(6)H(5) bonds. The detection of phenol and styrene suggests decomposition by a concerted reaction mechanism. Phenyl ethyl ether (PEE, C(6)H(5)OC(2)H(5)) pyrolysis was also studied using PIMS and using cryogenic matrix-isolated infrared spectroscopy (matrix-IR). The results for PEE also indicate the presence of both homolytic bond breaking and concerted decomposition reactions. Quantum mechanical calculations using CBS-QB3 were conducted, and the results were used with transition state theory (TST) to estimate the rate constants for the different reaction pathways. The results are consistent with the experimental measurements and suggest that the concerted retro-ene and Maccoll reactions are dominant at low temperatures (below 1000 °C), whereas the contribution of the C(6)H(5)C(2)H(4)-OC(6)H(5) homolytic bond scission reaction increases at higher temperatures (above 1000 °C).


Subject(s)
Ethers/chemistry , Phenyl Ethers/chemistry , Temperature , Carbon/chemistry , Kinetics , Mass Spectrometry , Models, Molecular , Molecular Conformation , Quantum Theory , Spectroscopy, Fourier Transform Infrared
20.
J Phys Chem A ; 114(34): 9043-56, 2010 Sep 02.
Article in English | MEDLINE | ID: mdl-20695633

ABSTRACT

The pyrolyses of anisole (C(6)H(5)OCH(3)), d(3)-anisole (C(6)H(5)OCD(3)), and d(8)-anisole (C(6)D(5)OCD(3)) have been studied using a hyperthermal tubular reactor and photoionization reflectron time-of-flight mass spectrometer. Gas exiting the reactor is subject to an immediate supersonic expansion after a residence time of approximately 65 mus. This allows the detection of highly reactive radical intermediates. Our results confirm that the first steps in the thermal decomposition of anisole are the loss of a methyl group to form phenoxy radical, followed by ejection of a CO to form cyclopentadienyl radical (c-C(5)H(5)); C(6)H(5)OCH(3) --> C(6)H(5)O + CH(3); C(6)H(5)O --> c-C(5)H(5) + CO. At high temperatures (T(wall) = 1200 degrees C - 1300 degrees C) the c-C(5)H(5) decomposes to propargyl radical (CH(2)CCH) and acetylene; c-C(5)H(5) --> CH(2)CCH + C(2)H(2). The formation of benzene and naphthalene is demonstrated with 1 + 1 resonance-enhanced multiphoton ionization. Propargyl radical recombination is a significant benzene formation channel. However, we show the majority of benzene is formed by a ring expansion reaction of methylcyclopentadiene (C(5)H(5)CH(3)) resulting from methyl radical addition to cyclopentadienyl radical; CH(3) + c-C(5)H(5) --> C(5)H(5)CH(3) --> C(6)H(6) + 2H. The naphthalene is generated from cyclopentadienyl radical recombination; 2c-C(5)H(5) --> C(5)H(5)-C(5)H(5) --> C(10)H(8) + 2H. The respective intermediate amu 79 and 129 species associated with these reactions are detected, confirming the stepwise nature of the decompositions. These reactions are verified by pyrolysis studies of cyclopentadiene (C(5)H(6)) and C(5)H(5)CH(3) obtained from rapid thermal dissociation of the respective dimer compounds, as well as pyrolysis studies of propargyl bromide (BrCH(2)CCH).

SELECTION OF CITATIONS
SEARCH DETAIL
...