Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047680

ABSTRACT

Inflammation is pathogenic to skin diseases, including atopic dermatitis (AD) and eczema. Treatment for AD remains mostly symptomatic with newer but costly options, tainted with adverse side effects. There is an unmet need for safe therapeutic and preventative strategies for AD. Resveratrol (R) is a natural compound known for its anti-inflammatory properties. However, animal and human R studies have yielded contrasting results. Mast cells (MCs) are innate immune skin-resident cells that initiate the development of inflammation and progression to overt disease. R's effects on MCs are also controversial. Using a human-like mouse model of AD development consisting of a single topical application of antigen ovalbumin (O) for 7 days, we previously established that the activation of MCs by a bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) initiated substantial skin remodeling compared to controls. Here, we show that daily R application normalized O-mediated epidermal thickening, ameliorated cell infiltration, and inhibited skin MC activation and chemokine expression. We unraveled R's multiple mechanisms of action, including decreased activation of the S1P-producing enzyme, sphingosine kinase 1 (SphK1), and of transcription factors Signal Transducer and Activator of Transcription 3 (Stat3) and NF-κBp65, involved in chemokine production. Thus, R may be poised for protection against MC-driven pathogenic skin inflammation.


Subject(s)
Dermatitis, Atopic , NF-kappa B , Animals , Humans , Mice , Chemokines/metabolism , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Mast Cells/metabolism , NF-kappa B/metabolism , Resveratrol/therapeutic use , Sphingosine , STAT3 Transcription Factor/metabolism
2.
Cells ; 11(7)2022 03 28.
Article in English | MEDLINE | ID: mdl-35406705

ABSTRACT

Mast cells are tissue-resident cells that contribute to allergic diseases, among others, due to excessive or inappropriate cellular activation and degranulation. Therapeutic approaches to modulate mast cell activation are urgently needed. Siglec-6 is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptor selectively expressed by mast cells, making it a promising target for therapeutic intervention. However, the effects of its engagement on mast cells are poorly defined. Siglec-6 expression and endocytosis on primary human mast cells and mast cell lines were assessed by flow cytometry. SIGLEC6 mRNA expression was examined by single-cell RNAseq in esophageal tissue biopsy samples. The ability of Siglec-6 engagement or co-engagement to prevent primary mast cell activation was determined based on assessments of mediator and cytokine secretion and degranulation markers. Siglec-6 was highly expressed by all mast cells examined, and the SIGLEC6 transcript was restricted to mast cells in esophageal biopsy samples. Siglec-6 endocytosis occurred with delayed kinetics relative to the related receptor Siglec-8. Co-crosslinking of Siglec-6 with FcεRIα enhanced the inhibition of mast cell activation and diminished downstream ERK1/2 and p38 phosphorylation. The selective, stable expression and potent inhibitory capacity of Siglec-6 on human mast cells are favorable for its use as a therapeutic target in mast cell-driven diseases.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Lectins , Mast Cells , Sialic Acid Binding Immunoglobulin-like Lectins , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Cell Line , Humans , Lectins/genetics , Mast Cells/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics
3.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360617

ABSTRACT

Atopic dermatitis (AD or eczema) is the most common chronic inflammatory skin disorder worldwide. Ceramides (Cer) maintain skin barrier functions, which are disrupted in lesional skin of AD patients. However, Cer status during the pre-lesional phase of AD is not well defined. Using a variation of human AD-like preclinical model consisting of a 7-day topical exposure to ovalbumin (OVA), or control, we observed elevation of Cer C16 and C24. Skin mRNA quantification of enzymes involved in Cer metabolism [Cer synthases (CerS) and ceramidases (Asah1/Asah2)], which revealed augmented CerS 4, 5 and 6 and Asah1. Given the overall pro-apoptotic nature of Cer, local apoptosis was assessed, then quantified using novel morphometric measurements of cleaved caspase (Casp)-3-restricted immunofluorescence signal in skin samples. Apoptosis was induced in response to OVA. Because apoptosis may occur downstream of endoplasmic reticulum (ER) stress, we measured markers of ER stress-induced apoptosis and found elevated skin-associated CHOP protein upon OVA treatment. We previously substantiated the importance of mast cells (MC) in initiating early skin inflammation. OVA-induced Cer increase and local apoptosis were prevented in MC-deficient mice; however, they were restored following MC reconstitution. We propose that the MC/Cer axis is an essential pathogenic feature of pre-lesional AD, whose targeting may prevent disease development.


Subject(s)
Apoptosis , Ceramides/metabolism , Dermatitis, Atopic/pathology , Eczema/pathology , Mast Cells/pathology , Skin/pathology , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Eczema/chemically induced , Eczema/drug therapy , Eczema/metabolism , Female , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Mice, Inbred C57BL , Ovalbumin/toxicity , Skin/drug effects , Skin/metabolism
4.
AIMS Allergy Immunol ; 5(3): 160-174, 2021.
Article in English | MEDLINE | ID: mdl-37885821

ABSTRACT

Atopic dermatitis (AD, eczema) is an inflammatory skin condition whose histopathology involves remodeling. Few preclinical AD studies are performed using male mice. The histopathological mechanisms underlying AD development were investigated here in male mice at a pre-lesional stage using a human AD-like mouse model. Hypodermal cellular infiltration without thickening of skin layers was observed after one epicutaneous exposure to antigen ovalbumin (OVA), compared to controls. In contrast to our previous report using female mice, OVA treatment did not activate skin mast cells (MC) or elevate sphingosine-1-phosphate (S1P) levels while increasing systemic but not local levels of CCL2, CCL3 and CCL5 chemokines. In contrast to the pathogenic AD mechanisms we recently uncovered in female, S1P-mediated skin MC activation with subsequent local chemokine production is not observed in male mice, supporting sex differences in pre-lesional stages of AD. We are proposing that differential involvement of the MC/S1P axis in early pathogenic skin changes contributes to the well documented yet still incompletely understood sex-dimorphic susceptibility to AD in humans.

5.
J Clin Invest ; 130(9): 4759-4770, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32484802

ABSTRACT

No known therapies can prevent anaphylaxis. Bruton's tyrosine kinase (BTK) is an enzyme thought to be essential for high-affinity IgE receptor (FcεRI) signaling in human cells. We tested the hypothesis that FDA-approved BTK inhibitors (BTKis) would prevent IgE-mediated responses including anaphylaxis. We showed that irreversible BTKis broadly prevented IgE-mediated degranulation and cytokine production in primary human mast cells and blocked allergen-induced contraction of isolated human bronchi. To address their efficacy in vivo, we created and used what we believe to be a novel humanized mouse model of anaphylaxis that does not require marrow ablation or human tissue implantation. After a single intravenous injection of human CD34+ cells, NSG-SGM3 mice supported the population of mature human tissue-resident mast cells and basophils. These mice showed excellent responses during passive systemic anaphylaxis using human IgE to selectively evoke human mast cell and basophil activation, and response severity was controllable by alteration of the amount of allergen used for challenge. Remarkably, pretreatment with just 2 oral doses of the BTKi acalabrutinib completely prevented moderate IgE-mediated anaphylaxis in these mice and also significantly protected against death during severe anaphylaxis. Our data suggest that BTKis may be able to prevent anaphylaxis in humans by inhibiting FcεRI-mediated signaling.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Anaphylaxis/prevention & control , Benzamides/pharmacology , Immunoglobulin E/immunology , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Agammaglobulinaemia Tyrosine Kinase/immunology , Anaphylaxis/immunology , Anaphylaxis/pathology , Animals , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, IgE/immunology
6.
Int J Mol Sci ; 20(1)2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30577572

ABSTRACT

Sialic acid-binding Ig-like lectin 8 (Siglec-8) is expressed on the surface of human eosinophils, mast cells, and basophils-cells that participate in allergic and other diseases. Ligation of Siglec-8 by specific glycan ligands or antibodies triggers eosinophil death and inhibits mast cell degranulation; consequences that could be leveraged as treatment. However, Siglec-8 is not expressed in murine and most other species, thus limiting preclinical studies in vivo. Based on a ROSA26 knock-in vector, a construct was generated that contains the CAG promoter, a LoxP-floxed-Neo-STOP fragment, and full-length Siglec-8 cDNA. Through homologous recombination, this Siglec-8 construct was targeted into the mouse genome of C57BL/6 embryonic stem (ES) cells, and chimeric mice carrying the ROSA26-Siglec-8 gene were generated. After cross-breeding to mast cell-selective Cre-recombinase transgenic lines (CPA3-Cre, and Mcpt5-Cre), the expression of Siglec-8 in different cell types was determined by RT-PCR and flow cytometry. Peritoneal mast cells (dual FcεRI⁺ and c-Kit⁺) showed the strongest levels of surface Siglec-8 expression by multicolor flow cytometry compared to expression levels on tissue-derived mast cells. Siglec-8 was seen on a small percentage of peritoneal basophils, but not other leukocytes from CPA3-Siglec-8 mice. Siglec-8 mRNA and surface protein were also detected on bone marrow-derived mast cells. Transgenic expression of Siglec-8 in mice did not affect endogenous numbers of mast cells when quantified from multiple tissues. Thus, we generated two novel mouse strains, in which human Siglec-8 is selectively expressed on mast cells. These mice may enable the study of Siglec-8 biology in mast cells and its therapeutic targeting in vivo.


Subject(s)
Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte/genetics , Gene Expression Regulation , Lectins/genetics , Mast Cells/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Cell Line , Gene Knock-In Techniques , Gene Targeting , Humans , Hypersensitivity/genetics , Hypersensitivity/immunology , Lectins/metabolism , Mast Cells/immunology , Mice , Mice, Transgenic , Organ Specificity/genetics
7.
Immunol Rev ; 282(1): 151-167, 2018 03.
Article in English | MEDLINE | ID: mdl-29431215

ABSTRACT

While the origin of the phrase "birds of a feather flock together" is unclear, it has been in use for centuries and is typically employed to describe the phenomenon that people with similar tastes or interests tend to seek each other out and congregate together. In this review, we have co-opted this phrase to compare innate immune cells of related origin, the eosinophil and mast cell, because they very often accumulate together in tissue sites under both homeostatic and inflammatory conditions. To highlight overlapping yet distinct features, their hematopoietic development, cell surface phenotype, mediator release profiles and roles in diseases have been compared and contrasted. What emerges is a sense that these two cell types often interact with each other and their tissue environment to provide synergistic contributions to a variety of normal and pathologic immune responses.


Subject(s)
Eosinophils/immunology , Hypersensitivity/immunology , Inflammation/immunology , Mast Cells/immunology , Animals , Cytokines/metabolism , Humans , Immunity, Innate , Immunoglobulin E/metabolism , Inflammation Mediators/metabolism , Mice , Rats , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...