Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(30): 12492-12505, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37449921

ABSTRACT

Silicon nanocrystals (SiNCs) are a promising material for applications in bioanalysis and imaging. Compared to other types of semiconductor nanocrystals, the development and characterization of energy transfer (ET) configurations with SiNCs has been far more limited, resulting in an equally limited understanding of this process and its SiNC-specific nuances. Here, we present a systematic and detailed study of ET between SiNCs and dyes. A combination of spectroelectrophoresis and time-gated and time-resolved photoluminescence measurements were used to characterize the photophysical properties of ensembles of SiNCs and gain insight into how these properties varied as a function of nanocrystal size. ET between SiNC donors and a series of non-fluorescent Black Hole Quencher (BHQ) dyes and fluorescent sulfo-Cyanine 5.5 dye acceptors was evaluated in terms of spectral properties, wavelength-resolved efficiencies, trends with spectral overlap integral, and differences between two methods of BHQ association with the SiNCs. The overall results were consistent with a Förster resonance energy transfer (FRET) mechanism where the polydispersity of the SiNCs had a significant impact on the observed ET: the choice of wavelength and timing parameters were important, and ensemble measurements represented an average of heterogeneous ET behaviors. Prospective advantages and disadvantages of SiNCs as ET donors are discussed. This study serves as a foundation for the continued and optimized development of ET configurations with SiNCs.

2.
Nanoscale ; 13(39): 16379-16404, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34492675

ABSTRACT

Silicon nanoparticles (SiNPs) can be challenging to prepare with defined size, crystallinity, composition, and surface chemistry. As is the case for any nanomaterial, controlling these parameters is essential if SiNPs are to realize their full potential in areas such as alternative energy generation and storage, sensors, and medical imaging. Numerous teams have explored and established innovative synthesis methods, as well as surface functionalization protocols to control these factors. Furthermore, substantial effort has been expended to understand how the abovementioned parameters influence material properties. In the present review we provide a commentary highlighting the benefits and limitations of available methods for preparing silicon nanoparticles as well as demonstrations of tailoring optical and electronic properties through definition of structure (i.e., crystalline vs. amorphous), composition and surface chemistry. Finally, we highlight potential opportunities for future SiNP studies.

3.
ACS Appl Mater Interfaces ; 12(47): 52251-52270, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33155802

ABSTRACT

Quantum dots (QDs) are semiconductor nanoparticles that exhibit photoluminescent properties useful for applications in the field of diagnostics and medicine. Successful implementation of these QDs for bio-imaging and bio/chemical sensing typically involves conjugation to biologically active molecules for recognition and signal generation. Unfortunately, traditional and widely studied QDs are based upon heavy metals and other toxic elements (e.g., Cd- and Pb-based QDs), which precludes their safe use in actual biological systems. Silicon quantum dots (SiQDs) offer the same advantages as these heavy-metal-based QDs with the added benefits of nontoxicity and abundance. The preparation of functional bio-inorganic hybrids from SiQDs and biomolecules has lagged significantly compared to their traditional toxic counterparts because of the challenges associated with the synthesis of water-soluble SiQDs and their relative instability in aqueous environments. Advances in SiQD synthesis and surface functionalization, however, have made possible the preparation of functional bio-inorganic hybrids from SiQDs and biological molecules through different bioconjugation reactions. In this contribution, we review the various bioconjugate reactions by which SiQDs have been linked to biomolecules and implemented as platforms for bio-imaging and bio/chemical sensing. We also highlight the challenges that need to be addressed and overcome for these materials to reach their full potential. Lastly, we give prospective applications where this unique class of nontoxic and biocompatible materials can be of great utility in the future.


Subject(s)
DNA/chemistry , Proteins/chemistry , Quantum Dots/chemistry , Silicon/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Embryo, Nonmammalian/diagnostic imaging , Embryo, Nonmammalian/metabolism , Fluorescent Dyes/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Humans , Microscopy, Confocal , Quantum Dots/toxicity , Xenopus laevis/growth & development
4.
ACS Appl Mater Interfaces ; 11(36): 33478-33488, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31414591

ABSTRACT

Ratiometric photoluminescent detection of the toxicologically potent organophosphate ester nerve agents paraoxon (PX) and parathion (PT) using the complementary optical and chemical properties of the long Stokes shift green fluorescent protein variant, mAmetrine1.2 (mAm), and red-emitting silicon-based quantum dots (SiQDs) is reported. PX and PT selectively quench SiQD photoluminescence (PL) through a dynamic quenching mechanism, thereby, facilitating the development of a ratiometric sensor platform that shows micromolar limits of detection for PX and PT and that is unaffected by the presence of common inorganic and organic interferents. As a part of the present study, we also demonstrate that the paper-based sensors derived from mAm and SiQDs detect PX and PT at concentrations as low as 5 µM using a readily available commercial color analysis smartphone "app". The ratiometric sensor reported herein can potentially be used for the convenient and rapid on-site detection and quantification of PX and PT in real-world samples.


Subject(s)
Green Fluorescent Proteins/metabolism , Nerve Agents/analysis , Quantum Dots/chemistry , Silicon/chemistry , Dynamic Light Scattering , Luminescence , Particle Size , Solubility , Solutions , Temperature , Water
5.
Nanoscale ; 10(39): 18706-18719, 2018 Oct 21.
Article in English | MEDLINE | ID: mdl-30270384

ABSTRACT

This study reports the preparation of functional bioinorganic hybrids, through application of the thiol-ene reaction, that exhibit catalytic activity and photoluminescent properties from enzymes and freestanding silicon nanocrystals. Thermal hydrosilylation of 1,7-octadiene and alkene-terminated poly(ethylene oxide)methyl ether with hydride-terminated silicon nanocrystals afforded nanocrystals functionalized with alkene residues and poly(ethylene oxide) moieties. These silicon nanocrystals were conjugated with representative enzymes through the photochemical thiol-ene reaction to afford bioinorganic hybrids that are dispersible and photostable in buffer, and that exhibit photoluminescence (λmax = 630 nm) and catalytic activity. They were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering analysis (DLS), absorption spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and pertinent enzyme activity assays. The general derivatization approach presented for interfacing enzymes with biocompatible silicon nanocrystals has far reaching implications for many applications ranging from sensors to therapeutic agents. The bioinorganic hybrids presented herein have potential applications in the chemical detection of nitrophenyl esters and urea. They can also be employed in enzyme-based theranostics as they combine long-lived silicon nanocrystal photoluminescence with substrate-specific enzymatic activity.


Subject(s)
Enzymes, Immobilized/chemistry , Nanoparticles/chemistry , Silicon/chemistry , Sulfhydryl Compounds/chemistry
6.
Langmuir ; 34(22): 6556-6569, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29758156

ABSTRACT

This study reports the preparation of functional bioinorganic hybrid materials exhibiting catalytic activity and photoluminescent properties arising from the combination of enzymes and freestanding silicon-based nanoparticles. The hybrid materials reported herein have potential applications in biological sensing/imaging and theranostics, as they combine long-lived silicon-based nanoparticle photoluminescence with substrate-specific enzymatic activity. Thermal hydrosilylation of undecenoic acid and alkene-terminated poly(ethylene oxide) with hydride-terminated silicon nanocrystals afforded nanoparticles functionalized with a mixed surface made up of carboxylic acid and poly(ethylene oxide) moieties. These silicon-based nanoparticles were subsequently conjugated with prototypical enzymes through the carbodiimide-mediated amide coupling reaction in order to form bioinorganic hybrids that display solubility and photostability in phosphate buffer, photoluminescence (λmax = 630 nm), and enzymatic activity. They were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering analysis (DLS), photoluminescence spectroscopy, and pertinent enzyme activity assays.


Subject(s)
Enzymes/metabolism , Nanoparticles/chemistry , Silicon/chemistry , Biosensing Techniques , Luminescence , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...