Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Chemosphere ; 352: 141317, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286306

ABSTRACT

The efficacy of using plants to phytoremediate heavy metal (HM) contaminated soils can be improved using soil amendments. These amendments may both increase plant biomasses and HMs uptake. We aimed to determine the composite effect of ammonium sulfate ((NH4)2SO4) combined with the application of an aqueous stem-extracted bio-chelator (Bidens tripartita L) on the plant biomasses and cadmium (Cd) phytoextraction by Solanum nigrum L. The constant (NH4)2SO4 application mode plus bio-chelator additives collectively enhanced the shoot Cd extraction ability owing to the increased plant biomass and shoot Cd concentration by S. nigrum. The shoot Cd extraction and the soil Cd decreased concentration confirmed the optimal Cd phytoextraction pattern in K8 and K9 treatments (co-application of (NH4)2SO4 and twofold/threefold bio-chelators). Accordingly, Cd contamination risk in the soil (2 mg kg-1) could be completely eradicated (<0.2 mg kg-1) after three rounds of phytoremediation by S.nigrum based on K8 and K9 treatments through calculating soil Cd depletion. The microorganism counts and enzyme activities in rhizosphere soils at treatments with the combined soil additives apparently advanced. In general, co-application mode of (NH4)2SO4 and aqueous bio-chelator was likely to be a perfect substitute for conventional scavenger agents on account of its environmental friendliness and cost saving for field Cd contamination phytoremediation by S. nigrum.


Subject(s)
Soil Pollutants , Solanum nigrum , Cadmium/analysis , Chelating Agents , Ammonium Sulfate/pharmacology , Soil Pollutants/analysis , Biodegradation, Environmental , Soil , Plant Roots/chemistry
2.
Life (Basel) ; 13(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36676193

ABSTRACT

The land application of biosolids can result in the unacceptable accumulation of Trace Elements (TEs) in agricultural soil and potentially introduce xenobiotics and pathogens into the food chain. Phytoremediation of biosolids aims to minimize this risk, while producing valuable biomass. Willows, well known to accumulate zinc (Zn), are used extensively in farming systems for soil conservation, shelter and as feed supplements with demonstrable health benefits. Potentially, biosolids phytoremediation could occur on marginal lands adjacent to farmlands where willows are grown for supplementary fodder. We aimed to determine the uptake and distribution of Zn and other TEs in willows grown on soils amended with biosolids and biosolids blended with biochar, with a view to their use as stock fodder. In the Canterbury Region, New Zealand, we grew Salix 'tangaio' (S. matsudana X S. alba) in a greenhouse trial and field study. The biomass production of the willows was unaffected by biosolids and increased by the biosolids+biochar mixture. The addition of 4% biosolids (w/w) to the soil resulted in a foliar Zn concentration of 600-1000 mg kg-1, some 25 times higher than the average New Zealand pasture. Zinc concentrations were highest in the bottom leaves and increased throughout the season. Biosolids addition doubled the copper (Cu) concentration to 10 mg kg-1. Adding biochar to the system reduced the plant uptake of Cu and to a lesser extent Zn, while cadmium (Cd) uptake was unaffected. For Cd, Cu, and Zn, plant uptake was a function of the Ca(NO3)2-extractable concentration, both in greenhouse experiments and the field trial. Future work should determine the changes in plant TE uptake over several growing seasons.

3.
Article in English | MEDLINE | ID: mdl-35682401

ABSTRACT

Globally, several hundred thousand hectares of both agricultural and urban land have become contaminated with per- and polyfluoroalkyl substances (PFAS). PFAS compounds are resistant to degradation and are mobile in soil compared to other common contaminants. Many compounds have KD values (matrix/solution concentration quotients) of <10. PFAS compounds endanger the health of humans and ecosystems by leaching into groundwater, exposure via dust, and, to a lesser extent, through plant uptake. This review aims to determine the feasibility of phytomanagement, the use of plants, and the use of soil conditioners to minimize environmental risk whilst also providing an economic return in the management of PFAS-contaminated land. For most sites, PFAS combinations render phytoextraction, the use of plants to remove PFAS from soil, inviable. In contrast, low Bioaccumulation Coefficients (BAC; plant and soil concentration quotients) timber species or native vegetation may be usefully employed for phytomanagement to limit human/food chain exposure to PFAS. Even with a low BAC, PFAS uptake by crop plants may still exceed food safety standards, and therefore, edible crop plants should be avoided. Despite this limitation, phytomanagement may be the only economically viable option to manage most of this land. Plant species and soil amendments should be chosen with the goal of reducing water flux through the soil, as well as increasing the hydrophobic components in soil that may bind the C-F-dominated tails of PFAS compounds. Soil conditioners such as biochar, with significant hydrophobic components, may mitigate the leaching of PFAS into receiving waters. Future work should focus on the interactions of PFAS with soil microbiota; secondary metabolites such as glomalin may immobilize PFAS in soil.


Subject(s)
Fluorocarbons , Soil Pollutants , Water Pollutants, Chemical , Ecosystem , Fluorocarbons/analysis , Humans , Plants, Edible/chemistry , Plants, Edible/metabolism , Soil/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
4.
J Sci Food Agric ; 101(13): 5583-5590, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33709452

ABSTRACT

BACKGROUND: Most countries set regulatory values for the total trace element (TE) concentrations in soil, although there is growing interest in using a risk-based approach to evaluate the bioavailable TE using dilute salt extractants or other soil parameters, including pH and organic carbon. The present study compares the current regulatory system (based on total TEs and pH) and a risk-based approach using 0.01 mol L-1 CaCl2 to estimate the bioavailable fraction. RESULTS: In total, 150 paired samples of Chinese flowering cabbages (Brassica parachinensis) and their growth soils were collected, and the total and extractable concentrations of chromium (Cr), cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As) and mercury (Hg), as well as soil pH and organic matter content, were measured. No more than 3.33% of the edible parts exceeded Chinese food safety standards, even when growing in soils exceeding the current regulatory thresholds by over 50%. The total soil Cd (1.5 mg kg-1 ), as well as the extractable concentrations of Cd (0.1 mg kg-1 ), Ni (0.03 mg kg-1 ) and Zn (0.1 mg kg-1 ), are the key factors affecting the TE concentrations in B. parachinensis. CONCLUSION: Our findings suggest that the current soil regulatory guidelines for safe production of B. parachinensis are overly strict and conservative. A risk-based approach based on the extractable TE concentrations would provide a better indication for plant uptake of soil TEs and avoid the waste of farmlands that can still produce safe vegetables. Future research should focus on providing crop-specific available TE concentration guidelines to promote effective utilization of farmlands. © 2021 Society of Chemical Industry.


Subject(s)
Brassica/chemistry , Trace Elements/analysis , Arsenic/analysis , Brassica/classification , Brassica/growth & development , Cadmium/analysis , China , Chromium/analysis , Copper/analysis , Food Safety , Mercury/analysis , Metals, Heavy/analysis , Nickel/analysis , Soil/chemistry , Soil Pollutants/analysis , Vegetables/chemistry , Vegetables/classification , Vegetables/growth & development , Zinc/analysis
5.
Chemosphere ; 271: 129536, 2021 May.
Article in English | MEDLINE | ID: mdl-33445027

ABSTRACT

Dissolved organic matter (DOM) release from Cd contaminated soils been linked to mobilisation of the metal as Cd-DOM complexes and this may be exacerbated by organic matter-rich soil amendments. The quantity and quality of the DOM can determine the proportion of dissolved Cd that partitions to mobile complexes and their stability and, thus, the potential for Cd transport from contaminated soils. The aim of this work was to examine differences in Cd mobilisation from soils to which different types of soil amendments/conditioners have been applied and the importance of DOM characteristics in determining the extent to which this can happen. Three soils were spiked with Cd to 2 mg kg-1, allowed to equilibrate and then treated with compost and peat. These soils and an untreated subsample of each soil were then adjusted to three different pHs: 5.6, 6.4 and 7.4, using lime. The amount of Cd mobilised from each soil was tested using a column leaching experiment. Ultrafiltration and speciation modelling were used to determine amounts of Cd as DOM-complexed, "truly" dissolved (<5 kDa) and colloidal species, while DOM quality was assessed using UV-Vis and fluorescence spectroscopy. Most colloidal Cd was mobilised from the compost treated soils (50%-60%), followed by the peat treated soils (20-44%). The relationships between colloidal Cd, DOC concentration and soil pH, together with the spectroscopic and modelling results showed that structural properties of DOM are an important factor in mobilising Cd from contaminated soils.


Subject(s)
Soil Pollutants , Soil , Cadmium/analysis , Environmental Pollution , Metals , Soil Pollutants/analysis
6.
Sci Total Environ ; 713: 136694, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32019035

ABSTRACT

The relative ease with which cadmium (Cd) in agricultural soils can transfer to crop plants can pose a potential health risk to consumers. However, efforts to predict and mitigate these risks are often confounded by the various factors that influence metal accumulation in the edible plant parts. The aim of this work was to identify key drivers that determine Cd concentrations in spinach leaves, potato tubers, onion bulbs and wheat grain grown in commercial horticultural operations across New Zealand (NZ). Paired soil and plant samples (n = 147) were collected from farms across different NZ growing regions. Cadmium concentrations in the edible parts were measured and four different tests were used to examine the potential bioavailability of soil Cd: pseudo-total and porewater concentrations, 0.05 M Ca(NO3)2-extraction and diffusive gradients in thin-films (DGT). Information on a range of soil and climatic variables was also collected. The methods' ability to represent Cd concentrations in the plant parts was assessed through single and multiple regression analysis that considered the different variables and the farm locations. Soil Cd concentrations determined by the different tests were positively related to plant concentrations and there were clear regional differences between these relationships. The Ca(NO3)2 extraction predicted over 76% of the variability in Cd concentrations in onion bulbs and spinach leaves, while DGT and porewater Cd provided the best estimates for potato tubers and wheat grains, respectively, once regional differences were considered, along with certain environmental and soil variables. The results show that certain soil and environmental factors can be a key influence for determining Cd accumulation in the edible parts of some plants and that regional differences are important for modulating the extent to which this occurs. These effects should be considered when trying to mitigate the potential risks arising from Cd in agricultural soils.


Subject(s)
Soil , Cadmium , New Zealand , Onions , Soil Pollutants , Solanum tuberosum , Spinacia oleracea , Triticum
7.
Environ Sci Pollut Res Int ; 27(11): 11830-11841, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31970644

ABSTRACT

Compared to discharge into waterways, land application of treated municipal effluent (TME) can reduce the need for both inorganic fertilizers and irrigation. However, TME irrigation may result in the accumulation of phosphorus (P) or trace elements in soil, and increased salinity and sodicity, which could damage soil structure and reduce infiltration. TME irrigation can also result in groundwater contamination through nitrate leaching or surface water contamination through runoff. This study aimed to evaluate the effects of increasing TME irrigation rates on quantity and quality of leachate and pasture growth in a lysimeter experiment using a Fluvial Recent soil and a Fragic Pallic soil. Pasture growth in the lysimeters was up to 2.5-fold higher in the TME treatments compared to the non-irrigated treatments. There were no signs of toxicity or accumulation of B, Al, Cd, Cu, Fe, Mn, As, and Zn. TME significantly increased the concentration of P and Na in the pasture. Nitrogen leaching from the lysimeters was negligible (< 1 kg/ha-1 equiv.) in all treatments, but mineral N accumulated in the soil profile of the highest application rate (1672 mm/yr). Although more P was added than removed in pasture, the rate of accumulation indicated that over a 50-year period, P will still be within the current New Zealand thresholds for grazed pastures. Sodium accumulated in the soil columns in all the TME treatments. The rate of accumulation was not proportional to the TME application rate, indicating that Na was moving down through the soil profile and leaching. Results indicate a low to moderate risk of sodicity in soil or toxicity in plants caused by Na.


Subject(s)
Agriculture , Soil , Fertilizers , New Zealand , Risk Assessment
8.
J Environ Qual ; 48(3): 701-708, 2019 May.
Article in English | MEDLINE | ID: mdl-31180444

ABSTRACT

Wheat ( L.) grain is a contributing source of dietary Cd in New Zealand, but despite this, there is a dearth of information on Cd concentrations in wheat and the factors that affect uptake. We measured Cd concentrations in 12 wheat cultivars grown in field sites across New Zealand and also assessed the soil, plant, and crop factors that have been reported to affect Cd uptake. We found there was a wide range in grain Cd concentrations (0.004 to 0.205 mg kg fresh weight [FW]). The overall mean concentration (0.066 mg kg FW) was below the maximum limit (ML) of 0.1 mg kg FW. Only 7% of grain samples across seven sites exceeded the ML. There were significant ( < 0.05) differences (2.5-fold) in Cd concentrations in wheat grain between cultivars. No strong significant relationships were found between soil properties and Cd concentrations in grain. Further, management factors affecting grain Cd concentrations were inconsistent. Given the lack of relationships between soils and management practices, the most effective way of limiting Cd uptake in wheat grain at sites where Cd exceeds MLs may be the use of low-Cd-accumulating cultivars. Further studies are required to explore specifically the influence of irrigation and effects of type and rate of fertilizer on Cd uptake in wheat, as well as to better understand the mechanisms of Cd uptake in wheat.


Subject(s)
Cadmium , Soil Pollutants , New Zealand , Soil , Triticum
9.
Front Plant Sci ; 10: 93, 2019.
Article in English | MEDLINE | ID: mdl-30787939

ABSTRACT

Root foraging may increase plant nutrient acquisition at the cost of reducing the total volume of soil explored, thereby reducing the chance of the roots encountering additional patches. Patches in soil seldom contain just one nutrient: the patch may also have distinct textural, hydrological, and toxicological characteristics. We sought to determine the characteristics of root foraging by a pioneering species, Leptospermum scoparium, using pot trials and rhizobox experiments with patches of biosolids. The growth of L. scoparium was increased by <50 t/ha equiv. of biosolids but higher doses were inhibitory. Roots foraged patches of biosolids in a low-fertility soil. There was no evidence of chemotaxis, rather, the roots proliferated toward the patch of biosolids, following chemical gradients of nitrate. While the biosolids also contained high concentrations of other nutrients (P, K, and S), only significant chemical gradients of nitrate were found. Once the roots encountered a patch of biosolids, the growth of the plant increased to a level similar to plants growing in soil homogeneously mixed with biosolids or surface-applied biosolids. Our results indicate that roots forage nitrate, which is mobile in soil, and that gradients of nitrate may lead to patches containing other less mobile nutrients, such as phosphate or potassium.

10.
Chemosphere ; 209: 675-684, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29958163

ABSTRACT

Gallium (Ga) and indium (In) are increasingly susceptible to soil contamination via disposal of electronic equipment. Chemically similar to aluminium (Al), these elements may be mobile and bioavailable under acidic conditions. We sought to determine extent and nature of Ga and In mobility in the soil - plant system and thus their potential to enter the food chain. Batch sorption experiments on a high fertility silt loam (pH 5.95, CEC 22 meq 100 g-1) showed strong retention of both elements to the soil matrix, with mean distribution coefficient (KD) values of 408 and 2021 L kg-1 for Ga and In respectively. KD increased with concentration, which we attributed to precipitation of excess ions as insoluble hydroxides. KD decreased with increased pH as Ga/In(OH)2+ and Ga/In(OH)2+ transitioned to Ga/In(OH)4-. Movement into the aboveground portions of perennial ryegrass (Lolium perenne L.) was low, with bioaccumulation factors of 0.0037 for Ga and 0.0002 for In; foliar concentrations peaked at 11.6 mg kg-1 and 0.015 mg kg-1 respectively. The mobility of Ga and In in the soil - plant system is low compared to other common trace element contaminants such as cadmium, copper, and zinc. Therefore, Ga and In are likely to accumulate in soils and soil ingestion, either directly, via inhaled dust, or dust attached to food, will be the largest pathway into the food chain. Future work should focus on the effect of redox conditions on Ga and In, as well as uptake into acidophilic plants such as Camellia spp., which accumulate Al.


Subject(s)
Electronic Waste/analysis , Gallium/chemistry , Indium/chemistry , Plants/chemistry
11.
Chemosphere ; 199: 684-693, 2018 May.
Article in English | MEDLINE | ID: mdl-29475159

ABSTRACT

The accumulation of Cd in soils worldwide has increased the demand for methods to reduce the metal's plant bioavailability. Organic matter rich soil amendments have been shown to be effective in achieving this. However, it is not known how long these amendments can retain the Cd, and whether dissolved organic matter (DOM) released from them can enhance the metal's mobility in the environment. In this study we sought to test the Cd binding capacity of various organic soil amendments, and evaluate differences in characteristics of the DOM released to see if they can explain the lability of the Cd-DOM complexes. We collected ten organic soil amendments from around New Zealand: five different composts, biosolids from two sources, two types of peat and spent coffee grounds. We characterised the amendments' elemental composition and their ability to bind the Cd. We then selected two composts and two peats for further tests, where we measured the sorption of Ni or Zn by the amendments. We analysed the quality of the extracted DOM from the four amendments using 3D Excitation Emission Matrix analysis, and tested the lability of the metal-DOM complexes using an adapted diffusive gradients in thin-films (DGT) method. We found that composts bound the most Cd and that the emergent Cd-DOM complexes were less labile than those from the peats. Ni-DOM complexes were the least labile. The aromaticity of the extracted DOM appears to be an important factor in determining the lability of Ni complexes, but less so for Zn and Cd.


Subject(s)
Cadmium/pharmacokinetics , Nickel/pharmacokinetics , Soil/chemistry , Trace Elements/analysis , Zinc/pharmacokinetics , Biological Availability , Cadmium/analysis , Metals/analysis , Metals/pharmacokinetics , New Zealand , Nickel/analysis , Nickel/chemistry , Plants/metabolism , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Trace Elements/pharmacokinetics , Zinc/analysis
12.
Chemosphere ; 197: 1-6, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29324285

ABSTRACT

Contamination of soil with lithium (Li) is likely to increase due to its wider dispersal in the environment, associated in particular, with the disposal of the now ubiquitous Li-ion batteries. There is, however, a paucity of information on the behaviour of Li in the soil-plant system. We measured the sorption of added Li to soil, and uptake of Li by food and fodder species. Around New Zealand, soil concentrations were shown to range from 0.08 mg/kg to 92 mg/kg, and to be positively correlated with clay content. Most geogenic Li in soil is insoluble and hence unavailable to plants but, when Li+ is added to soil, there is only limited sorption of Li. We found that Li sorption increased with increasing soil pH, and decreased proportionately with increasing Li concentrations. Compared to other cations in soil, Li is mobile and may leach into receiving waters, be taken up by plants, or have other biological impacts. In a soil spiked with just 5 mg/kg, plants took up several hundred mg/kg Li into leaves with no reduction in biomass. Lithium appears to be a phloem immobile element, with the highest concentrations occurring in the older leaves and the lowest concentrations occurring in the seeds or fruits. These results may raise concerns and risks in situations where food and fodder crops are associated with waste disposal.


Subject(s)
Environmental Monitoring , Lithium/analysis , Soil Pollutants/analysis , Biomass , Environmental Pollution , New Zealand , Plant Leaves/chemistry , Plants/chemistry , Soil/chemistry
13.
J Environ Qual ; 46(4): 836-844, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28783779

ABSTRACT

Repeated applications of Cd-rich phosphate fertilizers have resulted in elevated concentrations of this toxic element in some New Zealand soils. Exceedance of the food safety standard for Cd (0.1 mg kg fresh weight) has been reported for potato ( L.). Composts may efficiently sorb Cd in soil and therefore reduce its phytoavailability, leading to reduced uptake by plants. We aimed to determine the potential of various composts, shredded corn stover, and lime at two different rates to reduce the transfer of Cd from a soil (containing 1.45 mg kg Cd) to potato (var. 'Nadine'). In the control, the peeled tubers, skins, leaves, and stems had Cd concentrations of 0.04, 0.09, 0.26, and 0.53 mg kg dry weight, respectively. There was a 71% reduction in tuber Cd concentrations in potatoes grown in soil amended with 5% (w/w) shredded corn stover, although it significantly decreased potato biomass. Potatoes grown in soil amended with pig manure compost, mushroom compost, sawdust-animal waste compost, and municipal compost at rates of either 2.5 or 5% (w/w) reduced tuber Cd concentrations by 58 to 66%, 46 to 63%, 52 to 53%, and 29 to 49%, respectively. Lime (1.3%) application in soil reduced tuber Cd concentrations by 50%. Composts significantly increased tuber biomass. Further work is warranted to identify the key components of composts that result in reduced Cd uptake by plants.


Subject(s)
Cadmium/pharmacokinetics , Soil Pollutants/pharmacokinetics , Solanum tuberosum , Animals , Calcium Compounds , Oxides , Soil
14.
J Environ Qual ; 46(4): 906-914, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28783793

ABSTRACT

Biosolids could potentially be used for reforestation of degraded soils in New Zealand with native vegetation. Many native plant species of New Zealand thrive in low-fertility soils, and there is scant knowledge about their nutrient requirements. Therefore, it is unclear whether they will respond positively to the addition of biosolids. We used a pot trial to determine the responses of 11 native plant species to biosolids addition (10% w/w, ∼90 Mg hm) on two distinct degraded soils, Lismore stony silt loam and a Kaikoura sand. We also intended to prove that the soil microbial activity improves with the addition of biosolids, depending on the plant species. All species grew better in Lismore stony silt loam than the Kaikoura sand. All species in the Lismore stony silt loam responded positively to biosolids. The response to biosolids addition in the Kaikoura sand was variable, with four species showing no improvement in growth when biosolids were added. The nutrient status (N, P, S, Cu, and Zn) of all species improved when the two soils were amended with biosolids. However, some plant species, especially Sol. ex Gaertn. and Raoul, showed concerning concentrations of Cd (up to 2.4 mg kg). Dehydrogenase activity of soils (indicator of soil microbial activity) increased in biosolids-amended soils, with a strong species effect. Future work should involve field trials to determine the effect of biosolids addition on the establishment of native plant communities.


Subject(s)
Forestry , Soil Pollutants , Waste Management , Conservation of Natural Resources , New Zealand , Plants , Soil
15.
J Environ Qual ; 46(3): 481-489, 2017 May.
Article in English | MEDLINE | ID: mdl-28724106

ABSTRACT

Biosolids disposal to landfill or through incineration is wasteful of a resource that is rich in organic matter and plant nutrients. Land application can improve soil fertility and enhance crop production but may result in excessive nitrate N (NO-N) leaching and residual contamination from pathogens, heavy metals, and xenobiotics. This paper evaluates evidence that these concerns can be reduced significantly by blending biosolids with organic materials to reduce the environmental impact of biosolids application to soils. It appears feasible to combine organic waste streams for use as a resource to build or amend degraded soils. Sawdust and partially pyrolyzed biochars provide an opportunity to reduce the environmental impact of biosolids application, with studies showing reductions of NO-N leaching of 40 to 80%. However, other organic amendments including lignite coal waste may result in excessive NO-N leaching. Field trials combining biosolids and biochars for rehabilitation of degraded forest and ecological restoration are recommended.


Subject(s)
Metals, Heavy/analysis , Plants , Coal , Soil , Soil Pollutants
16.
J Environ Qual ; 45(1): 360-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26828192

ABSTRACT

Humanity produces ∼27 kg of dry matter in biosolids per person per year. Land application of biosolids can improve crop production and remediate soils but may result in excessive nitrate N (NO-N) leaching. Carbonaceous materials can reduce the environmental impact of biosolids application. We aimed to ascertain and compare the potentials for Monterey pine ( D. Don)-sawdust-derived biochars and raw sawdust to reduce NO-N leaching from biosolids. We used batch sorption experiments 1:10 ratio of material to solution (100 mg kg of NH or NO) and column leaching experiments with columns containing biosolids (2.7% total N, 130 mg kg NH and 1350 mg kg NO) mixed with soil, biochar, or sawdust. One type of low-temperature (350°C) biochar sorbed 335 mg kg NH, while the other biochars and sawdust sorbed <200 mg kg NH. None of the materials sorbed NO. Biochar added at rates of 20 to 50% reduced NH-N (<1% of total N) leaching from columns by 40 to 80%. Nitrate leaching (<7% of total N) varied little with biochar form or rate but was reduced by sawdust. Incorporating dried sawdust with biosolids showed promise for mitigating NO-N leaching. This effect likely is due to sorption into the pores of the biochar combined with denitrification and immobilization of N rather than chemical sorption onto surfaces.


Subject(s)
Charcoal , Nitrogen/chemistry , Pinus , Soil
17.
Int J Phytoremediation ; 18(9): 943-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26691784

ABSTRACT

Measuring the uptake of the chemical elements by plants usually requires the destructive harvest of the plants. Analyzing individual leaves is unsatisfactory because their elemental concentration depends on their age and position on the branch or stem. We aimed to find an easy method to determine the elemental concentrations using a few suitable single leaves along the main shoot of poplar (Populus monviso) and willow (Salix viminalis) cuttings at the end of the first season. Using Ca, Cd, Mn, Fe, K, P, Pb, and Zn concentrations, measured in selected leaves along the main shoots of the cuttings, mathematical functions were derived, which described best their distribution. Elemental allocation patterns were independent of the soil characteristics and soil element concentrations. Based on these functions, three leaves from specific positions along the main shoot were selected, which could accurately describe the derived functions. The deviation of the calculated average concentration, based on the 3-leaves method, was ≤15% in approximately 65% of the cases compared to the measured concentration. This method could be used to calculate element concentrations and fluxes in phytomanagement, biomonitoring, or biomass productions projects using one-season poplar or willow cuttings.


Subject(s)
Environmental Monitoring/methods , Populus/chemistry , Salix/chemistry , Soil Pollutants/analysis , Trace Elements/analysis , Trees/chemistry , Biodegradation, Environmental , Plant Leaves/chemistry
18.
Sci Total Environ ; 543(Pt A): 601-608, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26615483

ABSTRACT

Lignite has been proposed as a soil amendment that reduces nitrate (NO3(-)) leaching from soil. Our objective was to determine the effect of lignite on nitrogen (N) fluxes from soil amended with biosolids or urea. The effect of lignite on plant yield and elemental composition was also determined. Batch sorption and column leaching experiments were followed by a lysimeter trial where a low fertility soil was amended with biosolids (400 kg N/ha equivalent) and urea (200 kg N/ha equivalent). Treatments were replicated three times, with and without lignite addition (20 t/ha equivalent). Lignite did not reduce NO3(-) leaching from soils amended with either biosolids or urea. While lignite decreased NO3(-) leaching from an unamended soil, the magnitude of this effect was not significant in an agricultural context. Furthermore, lignite increased cumulative N2O production from soils receiving urea by 90%. Lignite lessened the beneficial growth effects of adding biosolids or urea to soil. Further work could investigate whether coating urea granules with lignite may produce meaningful environmental benefits.


Subject(s)
Coal/analysis , Nitrogen/analysis , Soil/chemistry , Urea/chemistry , Agriculture , Environmental Monitoring , Fertilizers , Models, Chemical , Soil Pollutants/analysis , Waste Disposal, Fluid
19.
Int J Phytoremediation ; 16(7-12): 719-34, 2014.
Article in English | MEDLINE | ID: mdl-24933881

ABSTRACT

Ecological restoration of marginal land and riparian zones in agricultural landscapes in New Zealand enhances the provision of above-ground ecosystem services. We investigated whether native endemic plant assemblages have remediation potential, through modifying soil nutrient and trace element mobility. Analysis of native plant foliage in situ indicated that selective uptake of a range of commonly deficient trace elements including Zn, B, Cu, Mn and Co could provide a browse crop to avoid deficiencies of these elements in livestock, although some native plants may enhance the risk of Mo and Cd toxicity. Native plant rhizospheres were found to modify soil physico-chemistry and are likely to influence lateral and vertical fluxes of chemical elements in drainage waters. Native plants on marginal land in agricultural landscapes could add value to dairy production systems whilst helping to resolve topical environmental issues.


Subject(s)
Magnoliopsida/metabolism , Soil Pollutants/metabolism , Trace Elements/metabolism , Biodegradation, Environmental , Dairying , Ecosystem , Environmental Monitoring , New Zealand , Plant Leaves/metabolism , Rhizosphere , Soil/chemistry , Soil Pollutants/analysis , Trace Elements/analysis
20.
Int J Phytoremediation ; 15(1): 77-90, 2013.
Article in English | MEDLINE | ID: mdl-23487987

ABSTRACT

Phytostabilization aims to reduce environmental and health risks arising from contaminated soil. To be economically attractive, plants used for phytostabilization should produce valuable biomass. This study investigated the biomass production and metal allocation to foliage and wood of willow (Salix viminalis L.), poplar (Populus monviso), birch (Betula pendula), and oak (Quercus robur) on five different soils contaminated with trace elements (TE), with varying high concentrations of Cu, Zn, Cd, and Pb as well as an uncontaminated control soil. In the treatment soils, the biomass was reduced in all species except oak. There was a significant negative correlation between biomass and foliar Cd and Zn concentrations, reaching up to 15 mg Cd kg(-1) and 2000 mg Zn kg(-1) in willow leaves. Lead was the only TE with higher wood than foliage concentrations. The highest Pb accumulation occurred in birch with up to 135 mg kg(-1) in wood and 78 mg kg(-1) in foliage. Birch could be suitable for phytostabilization of soils with high Cd and Zn but low Pb concentrations, while poplars and willows could be used to stabilise soils with high Cu and Pb and low Zn and Cd concentrations.


Subject(s)
Betula/metabolism , Metals/metabolism , Populus/metabolism , Quercus/metabolism , Salix/metabolism , Betula/growth & development , Biodegradation, Environmental , Biomass , Metals/analysis , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Populus/growth & development , Quercus/growth & development , Salix/growth & development , Soil/chemistry , Soil Pollutants , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...