Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 44(1): 131-42, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17996891

ABSTRACT

The multi-domain transmembrane serine protease corin cleaves pro-atrial natriuretic peptide (pro-ANP) in vitro to generate an active hormone, ANP. Corin may also contribute to the regulation of the natriuretic peptide system in vivo, and might be an attractive target for treatment of cardiovascular diseases. In order for corin to cleave its substrate pro-ANP, it should be catalytically active and located proximally. However, because knowledge of native corin is limited, we examined the expression, cardiac localization and molecular forms of the native corin protein. Immunofluorescence studies using a series of anti-corin antibodies directed against the stem and protease domains reveal that corin is present on the cell-surface of rat neonatal cardiomyocytes and murine HL-1 cardiomyocyte-like cells. Furthermore, we immunolocalized native corin in pro-ANP expressing cardiomyocytes. Immunoprecipitation of the membrane fraction of mouse heart extract showed that native corin had a relative mass of 205-210 kDa. Under reducing conditions native corin migrates as several different molecular weight forms corresponding to zymogen (uncleaved) and active (cleaved) forms. Studies using a FITC-tagged chloromethyl ketone that mimics the corin cleavage sequence in pro-ANP, suggest that an enzymatically active form of corin is localized to the cell surface of myocardial cells in vivo. Additionally, we showed that the 205-210 kDa form of corin is a glycosylated protein. Treatment of HL-1 cells with tunicamycin reduced the relative mass of expressed corin. We conclude that native corin is a glycosylated protease that is localized on the cell surface of pro-ANP-expressing cardiomyocytes in both zymogen and catalytically active forms.


Subject(s)
Atrial Natriuretic Factor/metabolism , Enzyme Precursors/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/enzymology , Protein Precursors/metabolism , Serine Endopeptidases/metabolism , Animals , Antibodies, Monoclonal/biosynthesis , Blotting, Western , Catalysis , Cell Line , Enzyme Activation , Female , Humans , Mice , Mice, Inbred BALB C , Molecular Weight , Myocytes, Cardiac/metabolism , Protein Transport , Rats , Rats, Sprague-Dawley , Serine Endopeptidases/chemistry
2.
J Biol Chem ; 279(24): 24994-5001, 2004 Jun 11.
Article in English | MEDLINE | ID: mdl-15069059

ABSTRACT

The mechanism of action of plasminogen (Pg) activators may affect their therapeutic properties in humans. Streptokinase (SK) is a robust Pg activator in physiologic fluids in the absence of fibrin. Deletion of a "catalytic switch" (SK residues 1-59), alters the conformation of the SK alpha domain and converts SKDelta59 into a fibrin-dependent Pg activator through unknown mechanisms. We show that the SK alpha domain binds avidly to the Pg kringle domains that maintain Glu-Pg in a tightly folded conformation. By virtue of deletion of SK residues 1-59, SKDelta59 loses the ability to unfold Glu-Pg during complex formation and becomes incapable of nonproteolytic active site formation. In this manner, SKDelta59 behaves more like staphylokinase than like SK; it requires plasmin to form a functional activator complex, and in this complex SKDelta59 does not protect plasmin from inhibition by alpha(2)-antiplasmin. At the same time, SKDelta59 is unlike staphylokinase or SK and is more like tissue Pg activator, because it is a poor activator of the tightly folded form of Glu-Pg in physiologic solutions. SKDelta59 can only activate Glu-Pg when it was unfolded by fibrin interactions or by Cl(-)-deficient buffers. Taken together, these studies indicate that an intact alpha domain confers on SK the ability to nonproteolytically activate Glu-Pg, to unfold and process Glu-Pg substrate in physiologic solutions, and to alter the substrate-inhibitor interactions of plasmin in the activator complex. The loss of an intact alpha domain makes SKDelta59 activate Pg through classical "fibrin-dependent mechanisms" (akin to both staphylokinase and tissue Pg activator) that include: 1) a marked preference for a fibrin-bound or unfolded Glu-Pg substrate, 2) a requirement for plasmin in the activator complex, and 3) the creation of an activator complex with plasmin that is readily inhibited by alpha(2)-antiplasmin.


Subject(s)
Fibrin/pharmacology , Metalloendopeptidases/pharmacology , Streptokinase/pharmacology , Tissue Plasminogen Activator/pharmacology , Binding Sites , Fibrinolysin/metabolism , Humans , Plasminogen/chemistry , Plasminogen/metabolism , Protein Conformation , Streptokinase/chemistry , alpha-2-Antiplasmin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...