Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-23519803

ABSTRACT

Terminases are enzymes that are required for the insertion of a single viral genome into the interior of a viral procapsid by a process referred to as 'encapsulation or packaging'. Many double-stranded DNA viruses such as bacteriophages T3, T4, T7, λ and SPP1, as well as herpes viruses, utilize terminase enzymes for this purpose. All the terminase enzymes described to date require two subunits, a small subunit referred to as TerS and a large subunit referred to as TerL, for in vivo activity. The TerS and TerL subunits interact with each other to form a functional hetero-oligomeric enzyme complex; however the stoichiometry and oligomeric state have not been determined. We have cloned, expressed and purified recombinant small terminase TerS from a 936 lactococcal bacteriophage strain ASCC454, initially isolated from a dairy factory. The terminase was crystallized using a combination of nanolitre sitting drops and vapour diffusion using sodium malonate as the precipitant, and crystallization optimized using standard vapour-diffusion hanging drops set up in the presence of a nitrogen atmosphere. The crystals belong to the P2 space group, with unit-cell parameters a=73.93, b=158.48, c=74.23 Å, and diffract to 2.42 Šresolution using synchrotron radiation. A self-rotation function calculation revealed that the terminase oligomerizes into an octamer in the asymmetric unit, although size-exclusion chromatography suggests that it is possible for it to form an oligomer of up to 13 subunits.


Subject(s)
Bacteriophages/chemistry , Endodeoxyribonucleases/chemistry , Protein Subunits/chemistry , Viral Proteins/chemistry , Bacteriophages/enzymology , Crystallization , Crystallography, X-Ray , Endodeoxyribonucleases/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Lactococcus/virology , Protein Multimerization , Protein Subunits/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Viral Proteins/genetics
2.
Proteins ; 71(1): 426-39, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17957771

ABSTRACT

The human insulin receptor (IR) homodimer is heavily glycosylated and contains a total of 19 predicted N-linked glycosylation sites in each monomer. The recent crystal structure of the IR ectodomain shows electron density consistent with N-linked glycosylation at the majority of sites present in the construct. Here, we describe a refined structure of the IR ectodomain that incorporates all of the N-linked glycans and reveals the extent to which the attached glycans mask the surface of the IR dimer from interaction with antibodies or other potential therapeutic binding proteins. The usefulness of Fab complexation in the crystallization of heavily glycosylated proteins is also discussed. The compositions of the glycans on IR expressed in CHO-K1 cells and the glycosylation deficient Lec8 cell line were determined by protease digestion, glycopeptide purification, amino acid sequence analysis, and mass spectrometry. Collectively the data reveal: multiple species of complex glycan at residues 25, 255, 295, 418, 606, 624, 742, 755, and 893 (IR-B numbering); multiple species of high-mannose glycan at residues 111 and 514; a single species of complex glycan at residue 671; and a single species of high-mannose glycan at residue 215. Residue 16 exhibited a mixture of complex, hybrid, and high-mannose glycan species. Of the remaining five predicted N-linked sites, those at residues 397 and 906 were confirmed by amino acid sequencing to be glycosylated, while that at residue 78 and the atypical (NKC) site at residue 282 were not glycosylated. The peptide containing the final site at residue 337 was not recovered but is seen to be glycosylated in the electron density maps of the IR ectodomain. The model of the fully glycosylated IR reveals that the sites carrying high-mannose glycans lie at positions of relatively low steric accessibility.


Subject(s)
Antigens, CD/chemistry , Polysaccharides/analysis , Receptor, Insulin/chemistry , Crystallization/methods , Crystallography, X-Ray , Glycosylation , Humans , Mass Spectrometry
3.
Proteins ; 66(2): 261-5, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17078079

ABSTRACT

O-linked glycosylation is a post-translational and post-folding event involving exposed S/T residues at beta-turns or in regions with extended conformation. O-linked sites are difficult to predict from sequence analyses compared to N-linked sites. Here we compare the results of chemical analyses of isolated glycopeptides with the prediction using the neural network prediction method NetOGlyc3.1, a procedure that has been reported to correctly predict 76% of O-glycosylated residues in proteins. Using the heavily glycosylated human insulin receptor as the test protein six sites of mucin-type O-glycosylation were found at residues T744, T749, S757, S758, T759, and T763 compared to the three sites (T759 and T763- correctly, T756- incorrectly) predicted by the neural network method. These six sites occur in a 20 residue segment that begins nine residues downstream from the start of the insulin receptor beta-chain. This region which also includes N-linked glycosylation sites at N742 and N755, is predicted to lack secondary structure and is followed by residues 765-770, the known linear epitope for the monoclonal antibody 18-44.


Subject(s)
Polysaccharides/analysis , Protein Processing, Post-Translational , Receptor, Insulin/chemistry , Acetylgalactosamine/analysis , Animals , CHO Cells , Cell Line , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , Epitopes/immunology , Glycopeptides/analysis , Glycosylation , Humans , Monosaccharide Transport Proteins/deficiency , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Neural Networks, Computer , Protein Conformation , Receptor, IGF Type 1/analysis , Receptor, Insulin/genetics , Receptor, Insulin/immunology , Recombinant Fusion Proteins/analysis , Serine/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Threonine/chemistry
4.
Nature ; 443(7108): 218-21, 2006 Sep 14.
Article in English | MEDLINE | ID: mdl-16957736

ABSTRACT

The insulin receptor is a phylogenetically ancient tyrosine kinase receptor found in organisms as primitive as cnidarians and insects. In higher organisms it is essential for glucose homeostasis, whereas the closely related insulin-like growth factor receptor (IGF-1R) is involved in normal growth and development. The insulin receptor is expressed in two isoforms, IR-A and IR-B; the former also functions as a high-affinity receptor for IGF-II and is implicated, along with IGF-1R, in malignant transformation. Here we present the crystal structure at 3.8 A resolution of the IR-A ectodomain dimer, complexed with four Fabs from the monoclonal antibodies 83-7 and 83-14 (ref. 4), grown in the presence of a fragment of an insulin mimetic peptide. The structure reveals the domain arrangement in the disulphide-linked ectodomain dimer, showing that the insulin receptor adopts a folded-over conformation that places the ligand-binding regions in juxtaposition. This arrangement is very different from previous models. It shows that the two L1 domains are on opposite sides of the dimer, too far apart to allow insulin to bind both L1 domains simultaneously as previously proposed. Instead, the structure implicates the carboxy-terminal surface of the first fibronectin type III domain as the second binding site involved in high-affinity binding.


Subject(s)
Protein Folding , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Crystallography, X-Ray , Dimerization , Immunoglobulin Fab Fragments/immunology , Microscopy, Electron , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptor, Insulin/immunology , Receptor, Insulin/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...