Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(5): e0249818, 2021.
Article in English | MEDLINE | ID: mdl-33989288

ABSTRACT

Euphausiids are a keystone species in coastal food webs due to their high lipid content and seasonally high biomass. Understanding the habitat and environmental drivers that lead to areas of high biomass, or 'hotspots', and their seasonal persistence, will support the identification of important foraging regions for mid- and upper- trophic level predators. We quantify the distribution of hotspots of the two dominant species of euphausiid in the north-east Pacific Ocean: Euphausia pacifica and Thysanoessa spinifera, as well as euphausiid larvae (mixed species). The Canadian coast encompasses the northern California Current Ecosystem and the transition zone to the Alaska current, and is a highly productive region for fisheries, marine mammals, and seabirds. We used spatiotemporal modelling to predict the distribution of these three euphausiid groups in relation to geomorphic and environmental variables during the important spring-summer months (April through September) when euphausiid biomass is highest. We quantified the area, intensity, and persistence of biomass hotspots across months according to specific oceanographic ecosections developed for marine spatial planning purposes. Persistent hotspots of both adult species were predicted to occur along the 200 m depth contour of the continental slope; however, differences were predicted on the shallower Dixon shelf, which was a key area for T. spinifera, and within the Juan de Fuca Eddy system where E. pacifica hotspots occurred. The continental slope along the west coast of Vancouver Island was the only persistent hotspot region common between both adult species and euphausiid larvae. Larval distribution was more correlated with T. spinifera than E. pacifica biomass. Hotspots of adults were more persistent across months than hotspots of euphausiid larvae, which were seasonally patchy. The persistence of biomass hotspots of forage species through periods of low overall biomass could maintain trophic connectivity through perturbation events and increase ecosystem resilience to climate change.


Subject(s)
Biomass , Euphausiacea/growth & development , Animals , Canada , Climate Change , Ecosystem
2.
Glob Chang Biol ; 24(5): 1904-1918, 2018 05.
Article in English | MEDLINE | ID: mdl-29431880

ABSTRACT

Anthropogenic activities have led to the biotic homogenization of many ecological communities, yet in coastal systems this phenomenon remains understudied. In particular, activities that locally affect marine habitat-forming foundation species may perturb habitat and promote species with generalist, opportunistic traits, in turn affecting spatial patterns of biodiversity. Here, we quantified fish diversity in seagrass communities across 89 sites spanning 6° latitude along the Pacific coast of Canada, to test the hypothesis that anthropogenic disturbances homogenize (i.e., lower beta-diversity) assemblages within coastal ecosystems. We test for patterns of biotic homogenization at sites within different anthropogenic disturbance categories (low, medium, and high) at two spatial scales (within and across regions) using both abundance- and incidence-based beta-diversity metrics. Our models provide clear evidence that fish communities in high anthropogenic disturbance seagrass areas are homogenized relative to those in low disturbance areas. These results were consistent across within-region comparisons using abundance- and incidence-based measures of beta-diversity, and in across-region comparisons using incidence-based measures. Physical and biotic characteristics of seagrass meadows also influenced fish beta-diversity. Biotic habitat characteristics including seagrass biomass and shoot density were more differentiated among high disturbance sites, potentially indicative of a perturbed environment. Indicator species and trait analyses revealed fishes associated with low disturbance sites had characteristics including stenotopy, lower swimming ability, and egg guarding behavior. Our study is the first to show biotic homogenization of fishes across seagrass meadows within areas of relatively high human impact. These results support the importance of targeting conservation efforts in low anthropogenic disturbance areas across land- and seascapes, as well as managing anthropogenic impacts in high activity areas.


Subject(s)
Biodiversity , Fishes/classification , Animals , Canada , Human Activities , Humans , Pacific Ocean
SELECTION OF CITATIONS
SEARCH DETAIL
...