Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 53(15): 8925-8937, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31313910

ABSTRACT

This study presents land-use regression (LUR) models for submicron particulate matter (PM1) components from an urban area. Models are presented for mass concentrations of inorganic species (SO4, NO3, NH4), organic aerosol (OA) factors, and total PM1. OA is source-apportioned using positive matrix factorization (PMF) of data collected from aerosol mass spectrometry deployed on a mobile laboratory. PMF yielded a three-factor solution: cooking OA (COA), hydrocarbon-like OA (HOA), and less-oxidized oxygenated OA (LO-OOA). This study represents the first time that LUR has been applied to source-resolved OA factors. We sampled a roughly 20 km2 area of West Oakland, California, USA, over 1 month (mid-July to mid-August, 2017). The road network of the sampling domain was comprehensively sampled each day using a randomized driving route to minimize temporal and spatial bias. Mobile measurements were aggregated both spatially and temporally for use as discrete spatial observations for LUR model building. LUR model performance was highest for those species with more spatial variability (primary OA factors: COA R2 = 0.80, HOA R2 = 0.67) and lowest for secondary inorganic species (SO4 R2 = 0.47, NH4 R2 = 0.43) that were more spatially homogeneous. Notably, the stepwise selective LUR algorithm largely selected predictors for primary OA factors that correspond to the associated land-use categories (e.g., cooking land-use variables were selected in cooking-related PM models). This finding appears to be robust, as we demonstrate the predictive link between land-use variables and the corresponding source-resolved PM1 components through a subsampling analysis.


Subject(s)
Air Pollutants , Air Pollution , Aerosols , California , Environmental Monitoring , Particulate Matter
2.
Environ Sci Technol ; 52(16): 9285-9294, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30070466

ABSTRACT

Organic aerosol (OA) is a major component of fine particulate matter (PM2.5) in urban environments. We performed in-motion ambient sampling from a mobile platform with an aerosol mass spectrometer (AMS) to investigate the spatial variability and sources of OA concentrations in Pittsburgh, Pennsylvania, a midsize, largely postindustrial American city. To characterize the relative importance of cooking and traffic sources, we sampled in some of the most populated areas (∼18 km2) in and around Pittsburgh during afternoon rush hour and evening mealtime, including congested highways, major local roads, areas with high densities of restaurants, and urban background locations. We found greatly elevated OA concentrations (10s of µg m-3) in the vicinity of numerous individual restaurants and commercial districts containing multiple restaurants. The AMS mass spectral information indicates that majority of the high concentration plumes (71%) were from cooking sources. Areas containing both busy roads and restaurants had systematically higher OA concentrations than areas with only busy roads and urban background locations. Elevated OA concentrations were measured hundreds of meters downwind of some restaurants, indicating that these sources can influence air quality on neighborhood scales. Approximately 20% of the population (∼250 000 people) in the Pittsburgh area lives within 200 m of a restaurant; therefore, restaurant emissions are potentially an important source of outdoor PM exposures for this large population.


Subject(s)
Air Pollutants , Air Pollution , Aerosols , Cities , Cooking , Environmental Monitoring , Particulate Matter , Pennsylvania , Restaurants
3.
Proc Natl Acad Sci U S A ; 113(45): 12649-12654, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791066

ABSTRACT

Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions.

4.
Faraday Discuss ; 189: 31-49, 2016 07 18.
Article in English | MEDLINE | ID: mdl-27092377

ABSTRACT

Organic aerosols provide a measure of complexity in the urban atmosphere. This is because the aerosols start as an external mixture, with many populations from varied local sources, that all interact with each other, with background aerosols, and with condensing vapors from secondary organic aerosol formation. The externally mixed particle populations start to evolve immediately after emission because the organic molecules constituting the particles also form thermodynamic mixtures - solutions - in which a large fraction of the constituents are semi-volatile. The external mixtures are thus well out of thermodynamic equilibrium, with very different activities for many constituents, and yet also have the capacity to relax toward equilibrium via gas-phase exchange of semi-volatile vapors. Here we describe experiments employing quantitative single-particle mass spectrometry designed to explore the extent to which various primary organic aerosol particle populations can interact with each other or with secondary organic aerosols representative of background aerosol populations. These methods allow us to determine when these populations will and when they will not mix with each other, and then to constrain the timescales for that mixing.


Subject(s)
Aerosols/chemistry , Organic Chemicals/chemistry , Aerosols/analysis , Air Pollution/analysis , Gases/chemistry , Mass Spectrometry , Nitrous Acid/chemistry , Organic Chemicals/analysis , Thermodynamics
5.
Environ Sci Technol ; 49(16): 9724-32, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26158746

ABSTRACT

An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Squalene/analogs & derivatives , Air Pollutants/analysis , Air Pollutants/chemistry , Bicyclic Monoterpenes , Hydrophobic and Hydrophilic Interactions , Monoterpenes/chemistry , Ozone/chemistry , Squalene/chemistry , Volatilization
6.
J Phys Chem A ; 117(51): 13935-45, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24131283

ABSTRACT

We present direct measurements of mixing between separately prepared organic aerosol populations in a smog chamber using single-particle mass spectra from the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Docosane and docosane-d46 (22 carbon linear solid alkane) did not show any signs of mixing, but squalane and squalane-d62 (30 carbon branched liquid alkane) mixed on the time scale expected from a condensational-mixing model. Docosane and docosane-d46 were driven to mix when the chamber temperature was elevated above the melting point for docosane. Docosane vapors were shown to mix into squalane-d62, but not the other way around. These results are consistent with low diffusivity in the solid phase of docosane particles. We performed mixing experiments on secondary organic aerosol (SOA) surrogate systems finding that SOA derived from toluene-d8 (a surrogate for anthropogenic SOA (aSOA)) does not mix into squalane (a surrogate for hydrophobic primary organic aerosol (POA)) but does mix into SOA derived from α-pinene (biogenic SOA (bSOA) surrogate). For the aSOA/POA, the volatility of either aerosol does not limit gas-phase diffusion, indicating that the two particle populations do not mix simply because they are immiscible. In the aSOA/bSOA system, the presence of toluene-d8-derived SOA molecules in the α-pinene-derived SOA provides evidence that the diffusion coefficient in α-pinene-derived SOA is high enough for mixing on the time scale of 1 min. The observations from all of these mixing experiments are generally invisible to bulk aerosol composition measurements but are made possible with single-particle composition data.


Subject(s)
Air Pollutants/analysis , Mass Spectrometry/methods , Particulate Matter/analysis , Aerosols , Alkanes/chemistry , Bicyclic Monoterpenes , Gases , Humans , Hydrophobic and Hydrophilic Interactions , Monoterpenes/chemistry , Particle Size , Squalene/analogs & derivatives , Squalene/chemistry , Toluene/chemistry , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...