Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 30(10): 2121-2139, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38416404

ABSTRACT

PURPOSE: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS: ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Neoplasms , Humans , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Animals , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Mice , Loss of Function Mutation , Cell Line, Tumor , Biomarkers, Tumor/genetics , Xenograft Model Antitumor Assays , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Organ Specificity/genetics
2.
Nucleic Acids Res ; 52(4): 1736-1752, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38109306

ABSTRACT

Repair of DNA damage is essential for the maintenance of genome stability and cell viability. DNA double strand breaks (DSBs) constitute a toxic class of DNA lesion and multiple cellular pathways exist to mediate their repair. Robust and titratable assays of cellular DSB repair (DSBR) are important to functionally interrogate the integrity and efficiency of these mechanisms in disease models as well as in response to genetic or pharmacological perturbations. Several variants of DSBR reporters are available, however these are often limited by throughput or restricted to specific cellular models. Here, we describe the generation and validation of a suite of extrachromosomal reporter assays that can efficiently measure the major DSBR pathways of homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single strand annealing (SSA). We demonstrate that these assays can be adapted to a high-throughput screening format and that they are sensitive to pharmacological modulation, thus providing mechanistic and quantitative insights into compound potency, selectivity, and on-target specificity. We propose that these reporter assays can serve as tools to dissect the interplay of DSBR pathway networks in cells and will have broad implications for studies of DSBR mechanisms in basic research and drug discovery.


Subject(s)
DNA Repair , High-Throughput Screening Assays , DNA/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Repair/genetics , Homologous Recombination , Recombinational DNA Repair , Humans , Cell Line
3.
Cancer Treat Res ; 186: 239-283, 2023.
Article in English | MEDLINE | ID: mdl-37978140

ABSTRACT

As a key component of the DNA Damage Response, the Ataxia telangiectasia and Rad3-related (ATR) protein is a promising druggable target that is currently widely evaluated in phase I-II-III clinical trials as monotherapy and in combinations with other rational antitumor agents, including immunotherapy, DNA repair inhibitors, chemo- and radiotherapy. Ongoing clinical studies for this drug class must address the optimization of the therapeutic window to limit overlapping toxicities and refine the target population that will most likely benefit from ATR inhibition. With advances in the development of personalized treatment strategies for patients with advanced solid tumors, many ongoing ATR inhibitor trials have been recruiting patients based on their germline and somatic molecular alterations, rather than relying solely on specific tumor subtypes. Although a spectrum of molecular alterations have already been identified as potential predictive biomarkers of response that may sensitize to ATR inhibition, these biomarkers must be analytically validated and feasible to measure robustly to allow for successful integration into the clinic. While several ATR inhibitors in development are poised to address a clinically unmet need, no ATR inhibitor has yet received FDA-approval. This chapter details the underlying rationale for targeting ATR and summarizes the current preclinical and clinical landscape of ATR inhibitors currently in evaluation, as their regulatory approval potentially lies close in sight.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers , DNA Damage
5.
Clin Cancer Res ; 29(8): 1631-1642, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36689546

ABSTRACT

PURPOSE: DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN: We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS: Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS: These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/radiotherapy , Cell Line, Tumor
6.
Mol Cell ; 82(24): 4664-4680.e9, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36455556

ABSTRACT

POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.


Subject(s)
DNA Breaks, Double-Stranded , Neoplasms , Humans , DNA Replication/genetics , Genomic Instability , DNA, Single-Stranded/genetics , Synthetic Lethal Mutations , DNA End-Joining Repair , Neoplasms/genetics
7.
J Med Chem ; 65(20): 13879-13891, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36200480

ABSTRACT

Human DNA polymerase theta (Polθ), which is essential for microhomology-mediated DNA double strand break repair, has been proposed as an attractive target for the treatment of BRCA deficient and other DNA repair pathway defective cancers. As previously reported, we recently identified the first selective small molecule Polθ in vitro probe, 22 (ART558), which recapitulates the phenotype of Polθ loss, and in vivo probe, 43 (ART812), which is efficacious in a model of PARP inhibitor resistant TNBC in vivo. Here we describe the discovery, biochemical and biophysical characterization of these probes including small molecule ligand co-crystal structures with Polθ. The crystallographic data provides a basis for understanding the unique mechanism of inhibition of these compounds which is dependent on stabilization of a "closed" enzyme conformation. Additionally, the structural biology platform provided a basis for rational optimization based primarily on reduced ligand conformational flexibility.


Subject(s)
DNA End-Joining Repair , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Ligands , DNA/metabolism , DNA Polymerase theta
8.
Nat Commun ; 12(1): 3636, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140467

ABSTRACT

To identify approaches to target DNA repair vulnerabilities in cancer, we discovered nanomolar potent, selective, low molecular weight (MW), allosteric inhibitors of the polymerase function of DNA polymerase Polθ, including ART558. ART558 inhibits the major Polθ-mediated DNA repair process, Theta-Mediated End Joining, without targeting Non-Homologous End Joining. In addition, ART558 elicits DNA damage and synthetic lethality in BRCA1- or BRCA2-mutant tumour cells and enhances the effects of a PARP inhibitor. Genetic perturbation screening revealed that defects in the 53BP1/Shieldin complex, which cause PARP inhibitor resistance, result in in vitro and in vivo sensitivity to small molecule Polθ polymerase inhibitors. Mechanistically, ART558 increases biomarkers of single-stranded DNA and synthetic lethality in 53BP1-defective cells whilst the inhibition of DNA nucleases that promote end-resection reversed these effects, implicating these in the synthetic lethal mechanism-of-action. Taken together, these observations describe a drug class that elicits BRCA-gene synthetic lethality and PARP inhibitor synergy, as well as targeting a biomarker-defined mechanism of PARPi-resistance.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Repair/drug effects , DNA-Directed DNA Polymerase/genetics , Nucleic Acid Synthesis Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Synthetic Lethal Mutations/drug effects , Allosteric Regulation , Animals , Apoptosis/drug effects , Apoptosis/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Damage/drug effects , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Deoxyribonucleases/antagonists & inhibitors , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Female , Homologous Recombination/drug effects , Humans , Inhibitory Concentration 50 , Mice , Organoids/drug effects , Ovarian Neoplasms/genetics , Rats , Synthetic Lethal Mutations/genetics , Tumor Suppressor p53-Binding Protein 1/deficiency , Tumor Suppressor p53-Binding Protein 1/metabolism , DNA Polymerase theta
10.
Cell Cycle ; 6(8): 982-92, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17404511

ABSTRACT

Centrosome amplification is frequently observed in tumor cells exposed to genotoxic stress, however the underlying mechanisms and biological consequences are poorly understood. Here, we show that the anti-metabolite and alkylating agent 6-thioguanine (6-TG) induces centrosome amplification resulting in the formation of multi-polar spindles when damaged cells subsequently enter mitosis. These aberrant, multi-polar mitoses are frequently resolved by asymmetric cell divisions causing unequal segregation of genetic material and cell death in one or both daughter products. We show that this phenomenon is associated with transient cell cycle delay in S- and G(2)-phase and is dependent on DNA mismatch repair (DNA MMR) proficiency and Chk1 protein kinase activity. Although Chk1-deficient cells do not exhibit cell cycle delay, centrosome amplification, or multi-polar spindle formation, continued cell cycle progression in the presence of 6-TG eventually results in increased levels of mitotic catastrophe, most probably due to mitosis with incompletely replicated DNA. Taken together, these results reveal novel mechanisms of cell killing by 6-TG and underscore the importance of interactions between cell cycle checkpoints and DNA MMR in determining the fate of cells bearing DNA damage.


Subject(s)
Alkylating Agents/toxicity , Centrosome/drug effects , DNA Damage , DNA Mismatch Repair , Protein Kinases/physiology , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Centrosome/physiology , Checkpoint Kinase 1 , Chickens , Humans , Models, Biological , Protein Kinases/genetics , Spindle Apparatus/drug effects , Thioguanine/toxicity , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...